
Beyond Generic Component Parameters

Uwe Aßmann

Research Center for Integrational Software Engineering (RISE),
PELAB, IDA, Linköpings Universitet, Sweden,

http://www.ida.liu.se/˜rise, uweas@ida.liu.se

Abstract. For flexible use in application contexts, software components
should be parameterized, but also extended appropriately. Until now,
there is no language mechanism to solve both problems uniformly. This
paper presents a new concept, component hooks. Hooks are similar to
generic component parameters but go some steps beyond. Firstly, they
allow genericity on arbitrary program elements, leading to generic pro-
gram elements. Secondly, they introduce an abstraction layer on generic
parameters, allowing for structured generic parameters that bind several
program elements together. Thirdly, if they are abstract set or sequence
values, they can also be used to extend components. Lastly, since they
only rely on a meta model they are a language independent concept
which can be applied to all languages.
Hooks form a basic parameterization concept for components written
in languages with a meta model. For such languages, hooks generalize
many well known generic language mechanisms, such as macros, semantic
macros, generic type parameters, or nested generics. They also provide
a basic concept to realize simple forms of aspect weavers and other ad-
vanced software engineering concepts.

1 Introduction

Over time, various generic parameters concepts have appeared in programming
languages and component systems. Mainly, they allow for parameterizations of
classes, types, or packages with other classes and types. A generic parameter
marks one or several program elements in a component which should be replaced
consistently by a valid type. Spoken in more abstract terms, the substitution
or bind operation substitutes every reference of a generic parameter type to a
reference of a type.

This paper introduces hooks, an abstraction concept for generic parameters
which generalizes them in several directions.1 Firstly, hooks provide generic-
ity for arbitrary program elements, not only types (Section 2). Secondly, hooks

1 Hooks enable us to attach things to other things. In the literature, the metaphor
has been used several times to denote parameterizations of components, e.g., of
parameterization of classes [Pre95] or extensions of components such as procedure
extensions in emacs Lisp [LLStGMG98]. Here, we use the word in a similar way, but
relate it to arbitrary meta objects of the component language.

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 141–154, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

142 Uwe Aßmann

may be structured. This allows for structured parameter values that parameter-
ize component parts which are not directly related (Section 3). Thirdly, hooks
generalize generic parameters to sets and sequences of program elements. Then,
hooks can be extended to enrich a component with additional functionality (Sec-
tion 4). Fourth, many hooks can be regarded as being implicitly defined by the
programming language (Section 5). This simplifies component extensions. Since
the component language can easily be varied, also to XML or binary languages
(Section 6), hooks provide a general parameterization and extension mechanism
for every language with a meta model.

In essence, the concept of hooks introduces an indirection between the pro-
gram elements of a component and the actual generic parameter. Hence, hooks
introduce a new abstraction level for generic parameters; generic parameters are
no longer directly tied to program elements.

2 Generic Program Elements

For this paper, we assume that components are programmed in a strongly typed
programming language with a compile-time meta model. Such languages are
called open languages [CM93] [Aßm98] since they originally are designed for
language extension. They support static meta-programming, execute the meta
programs during compilation, and remove them afterwards. In contrast, modern
object oriented languages support a run time meta model (Java, C#) which is
not available at compile time (dynamic meta programming, reflection).

We start with some basic definitions. Every element of a program corresponds
to a language concept. In an open language, the concepts are represented on the
meta level, i.e., as types in the language’s meta model. Hence, every element of
the program is related to a meta object, a type in the language’s meta model.2

Definition 1 (Principle of Type Safe Substitution). In a language with
a meta model, if a program element should be substituted by another, it can be
checked whether the meta model type of the replacing program element is equal
to that of the replaced program element.

We assume that a component is a set of arbitrary program elements.

Definition 2 (Component). A component is a set of program elements.

This definition of a component is rather general. It covers many cases of static
parameterization and static composition of components. Any kind of source code
units, such as classes, methods, packages, even aspects may be regarded as com-
ponents. However, the definition does not cover run time composition.

Definition 3 (Hook). A hook is a set of program elements or positions in a
component, being marked-up as generic.

2 The literature uses these terms rather loosely; actually it is the language’s model
and the program’s meta model. However, even UML’s model is called UML meta
model although it is a meta model for UML specifications, and a model for UML.

Beyond Generic Component Parameters 143

Hooks generalize generic parameters. Their definition will be explained and
elaborated on in the paper. As a base language for components, we use Java,
although any other language can be used. As a notation for hooks, we use XML
markup: Appendix 1 contains an XML schema. Other markup techniques, such
as language extensions, can also be employed. In this scenario, hooks are sets
of program elements which are marked-up as generic. For instance, a hook that
marks up a generic super class looks as follows:

class Chicken extends
<generic name="Super" type="Type"> Animal </generic> { .. }
Alternatively, a markup may be empty which means that it marks a position

in the component. A hook that marks up a super class position looks as follows,
using the abbreviation syntax for XML closing tags:

class Chicken extends <generic name="Super" type="Type" /> { .. }
Figure 1 illustrates that hooks provide an indirection mechanism for denoting

generic parameters and positions of components. It displays a method compo-
nent with three hooks: a generic type parameter, a hook for the entry point of
the method, and a hook for the exit points of the method. In the case of the
generic parameter T, the hook T marks up a position for a type reference. In the
case of the method entry, the hook points to the entry position of the method.
This hook is predefined by the programming language and marked up implicitly
(Section 5). In the case of the method exit, the hook refers to the two exit posi-
tions where control flow returns from the method. Hooks describe generic parts
of components in a more abstract way than generic parameters do since they
abstract from the concrete representations of the component.

eat(<generic name=T type=Type/> what)
{{

 if (!what.canBeEaten())
 return;

 while (!what.isEmpty()) {
 bite(what);
 digest();
 }

}}

Method.Entry

Method.Exit

Method.T

Fig. 1. A method component Method with three hooks, a generic type parameter, a
hook for the entry point of the method, and a hook for the exit points of the method.

144 Uwe Aßmann

We use XML mainly for presentation purposes. Actually, XML markup has a
major deficiency since its substitution mechanism is not type-safe, and hence too
weak for our purpose. Standard methods for XML transformation, e.g., languages
such as XSLT, replace markup with context free pattern matching and disregard
the context and semantic constraints. Here, we require a type-safe rewriting
machinery: a bind operation for a generic hook must check whether the value it
substitutes for the markup fits into context. Such checks are typically performed
by a template expander in a compiler, or by the evaluator of the static meta
programs. Here, they are assumed to be a given underlying mechanism.

Example 1. Generic modifiers are generic program elements. For instance, the
synchronized modifier in Java ensures exclusive execution of a Java method.
When they are marked up as being generic several methods can be consistently
instantiated for a parallel context:

class Chicken extends Animal {
<generic name="Synch" type="SynchModifier" /> eat() { .. }
<generic name="Synch" type="SynchModifier" /> drink() { .. }

}
Here, Synch is the name of the generic modifier hook. During parameter-

ization, its markup can be replaced by the synchronized modifier. Suppose,
several chickens live in parallel and nurture from a shared food and water re-
source. Then, this resource should have its access synchronized. In the following
example [[]] is an operator to read a component from a file, and << >> is an
operator to produce program elements from strings:

[["Chicken"]].findHook("Synch").bind(<<"synchronized">>);

This expression expands the component to:

class Chicken extends Animal {
synchronized eat() { .. }
synchronized drink() { .. }

}
Hence, generic modifiers instantiate several methods consistently to the same

synchronization behavior. Also, due to type safety, it can be enforced that generic
synchronization modifiers are replaced by synchronization modifiers. In general,
generic program elements introduce consistent behavior for different components
beyond the purposes which can be modeled by inheritance.

Related Work That Uses Generic Program Elements. To our knowledge, the
first language that provided generic parameters was CLU [LAB+79]. Similarly,
type parameters were employed in Ada83 [Ada83]. Ada95 generalized the generic
type concept to generic packages, packages to which classes can be passed as pa-
rameters [Ada95]. This concept allows for easy construction of frameworks since
large subsystems can be parameterized by classes. From Ada83, there also leads

Beyond Generic Component Parameters 145

a trace to C++ templates [Str97]. They are more flexible since parameter values
can be concatenated to identifiers. For instance, this allows for the renaming of
methods:

template class Chicken<class Color> {
eat<Color>() {...}

}
which then is expanded to eatBrown if Color is bound to Brown.

Template Metaprogramming employs C++ templates for more sophisticated
purposes, e.g., for static control flow constructs [CE00]. These are control flow
constructs which are evaluated at compile time, resembling the #ifdef state-
ments of the C preprocessor. However, they are evaluated by the standard tem-
plate mechanism and provide type-safety. On the other hand, this mechanism
represents all generic program elements with generic types, and that might be
the wrong way of abstraction.

PARIS provides program schemes which can be parameterized by all kinds
of program elements [KRT87]. It supports a form of type-safety although it
does not yet provide an explicit meta model. Instead, it guesses the type of a
generic parameter from its position in the template. Beyond simple substitution,
PARIS proposes an parameterization process which is guided by a rule base and
produces a software artifact automatically. From the papers, it is unclear how
successful this automatic parameterization process has been in practice.

BETA slots are generic program elements which may be substituted by code
fragments [BNS+91] [LKLLMM94]. The substitution is guided by the language’s
grammar. Only strings that are produced from a certain non-terminal (frag-
ments) may be substituted for the non-terminal. The BETA meta-programming
system enforces correct substitution and allows reuse of fragments because they
are stored in files. Fragments can even be compiled separately. Hence, BETA
slots and fragments are one of the most advanced genericity concepts available.

Semantic Macros extend standard macro processors by letting the macro ac-
cess results of the semantic analysis of the compiler [Mad89] [KFD99]. Then,
macro substitution can be made type safe. Every macro has a result type in
terms of the meta model (or, in the types of the abstract syntax tree, if a meta
model is not available). Since the context of a macro reference may query the
type which is required to be substituted, macro references are rejected if they
do not substitute to the right meta model type. Hence, Semantic Macros sim-
plify the use of type-safe substitution and they provide a simple implementation
technique for component parameterization. They can even serve as language ex-
tensions for hooks, i.e., can embed the hook concept in a component language.
However, Semantic Macros are unstructured and cannot deal with the structured
parameterizations in the next section.

3 Structured Generic Parameters

Since hooks introduce an indirection concept for generic parameters, the pa-
rameterizations become more flexible. Furthermore, hooks can be structured to

146 Uwe Aßmann

represent structured generic parameters. Structured generic parameters provide
another degree of freedom for parameterization. Every part of the structured pa-
rameter substitutes a different value. Hence, in one go several parameterizations
can be performed together, and a component may be parameterized much more
flexibly than with unstructured simple generic parameters.

Example 2. As an example, consider a communication between two partners,
obeying a communication protocol. Such a protocol must be initialized, usually in
a constructor, and finalized, usually in a destructor (we assume for this example
that Java contains destructors with the usual syntax of C++ or C#).

We extend the definition of our Chicken component (Figure 2). As the XML
schema in the appendix indicates, a structured hook can be compared to a record.
Every part of a structured hook must name the structured hook (sname), must
indicate a feature, and a type. For our component, the following class for the
value of the structured hook can be defined:

class ProtocolValue { Statement init; Call call; Statement destr; }

We can write the following extension program that binds the structured
generic parameter with a structured value

[["Chicken"]].findHook("SendEggs").bind(new ProtocolValue(
<<"egg.initialize()">>,<<"human.receive()">>,<<"egg.finalize()">>));

To simplify the example, we omit the sub-hooks for the definition of the
objects egg and human. Then the following class results:

class Chicken {
 public Chicken () {
 <sgeneric sname="SendEggs" feature="init" type="Statement"/>
 }
 public void Chicken() {
 <sgeneric sname="SendEggs" feature="call" type="Call"/>
 }
 public ~Chicken () {
 <sgeneric sname="SendEggs" feature="destr" type="Statement"/>
 }
}}

SendEggs

Call

Destr

Init

Fig. 2. A structured hook. It can be replaced in one go with a structured value of
parameters. It parameterizes disconnected component parts.

Beyond Generic Component Parameters 147

class Chicken {
public Chicken () {

<sgeneric sname="SendEggs" feature="init" type="Statement">
egg.initalize();

</sgeneric>
}
public void produce() {

<sgeneric sname="SendEggs" feature="call" type="Call">
human.receive(egg);

</sgeneric>/>
} public ˜Chicken () {

<sgeneric sname="SendEggs" feature="destr" type="Statement">
egg.finalize();

</sgeneric>/>
}

}
For the moment, we leave the hook markup in the component, it is to be

extended again in Section 4.
Nested hooks provide one advantage over standard parameterization mech-

anisms such as polymorphic hot spots [Pre95]. The above example can only be
expressed by subclassing and polymorphism if all inserted calls go to the same
object. If, as in the example, different objects are called, subclassing is not suffi-
cient. However, a structured generic value can provide different values for all of
the three sub-hooks.

With structured hooks, several generic parameters of sets of components can
be parameterized together in a consistent way. Hence, they lend themselves to
generic frameworks. Since we have used a very general component notion these
frameworks may be generic over any type of program unit.

Related Work. Program scheme approaches such as PARIS allow to parame-
terize program parts with several parameters, however do not support struc-
tured generic parameters for binding several generic parameters together. One
approach with structured generic parameters is GenVoca [BST+94]. GenVoca
expresses structuring by nesting and describes nested values with a context free
language over the possible values. On the other hand, GenVoca does not allow to
markup components, and requires that all subvalues of a structured parameter
are substituted to one position in the component. Hence, it does not support
parameterization of disconnected program parts.

The only available fully-fledged nested generic parameter mechanism is BETA
slots and fragments [LKLLMM94], although it has not been recognized as such.
BETA slots (the hooks) are instantiated with BETA fragments (the values), and
these may contain slots so that a fragment can nest slots. However, nested frag-
ments must be created as a sequence of parameterizations; a closed form for a
parameter value cannot be created. However, this differs only marginally from
our approach.

148 Uwe Aßmann

Different program parts can only be parameterized together if the generic
parameter points to the parts, but is not identical to the parts. And structured
hooks provide this indirection.

4 Set Hooks for Component Extension

In this section, we consider the case when a hook refers to program elements or
positions found in a set or list of equally typed program elements. Many language
elements appear in lists or sets, e.g., fields in classes, parameters in parameter
lists, or modifiers in modifier sets. With such set hooks, it is possible to generalize
the notion of a generic parameter to component extensions. If we allow that a
hook is bound several times, i.e., if it may be extended with additional program
element values, a component can be extended step by step by extending of its
hooks (Figure 3). We assume a suitable extend operation for this purpose which
also should be type safe.

Hook extension is useful for many purposes. It goes beyond standard binding
of generic parameters because it does not only allow for parameterization, but
for extension. Thus it is important for all those situations in component based
software engineering when a component based system needs to be extended with
new functionality. These situations often occur in software evolution or incremen-
tal software processes such as XP [Bec99]. Also, adding a new member to a class
is equivalent to the extending the hook of its members. Hence, hook extension
can model class extensions in inheritance, as well as merge operations in record
and class calculi [Bra92]. However, this only holds for pure extensions without
overriding old members. To mimick the full effect of extension and merge oper-

Fig. 3. Extending a hook for component extension. Above: adding more and more pro-
gram elements to the hook. Down: Adding program elements that relate the component
to other components, e.g., communication statements.

Beyond Generic Component Parameters 149

ations, the extensions must be checked whether they override existing members.

Example 3. Extensions of hooks can also model simple aspect oriented exten-
sions. In aspect-oriented programming, aspects extend a system core with ad-
ditional features [KLM+97]. For instance, an animation aspect can be specified
separately and weaved by an extension into the core.

Suppose, we extend the hooks in Example 2 a second time with the following
operation

[["Chicken"]].findHook("SendEggs").extend(new ProtocolValue(
<<"initEvents()">>,<<"fireEvent()">>,<<"finalizeEvents()">>));

then this example provides a simple form of aspect weaving. The extension op-
eration can be thought of as adding an animation aspect to the core of the
component. It introduces new statements which send an event to an animation
object, and this additional object animates that the chicken has produced an
egg and sent it to the waiting human. This extension can be repeated for other
components to be animated, and in this way a useful animation aspect can be
added to a system core.

Aspect weavings can be modeled as extensions of hooks if the aspects depend
on the core but not vice versa. Spoken in terms of program analysis, there should
be forward data dependencies from the core to the aspect, but not vice versa.
When extending the core with such forward dependencies, the semantics of the
core is not changed, but the aspect receives all necessary data from the core
so that it can execute. Clearly, hook extension works for the animation aspect
and other ones, for instance debugging or communication aspects. Of course,
extension of set hooks has the usual problems of Aspect Oriented Programming,
e.g., the aspect interaction problem. Whenever two extensions conflict with each
other semantically, the order in which they are applied is important. It is future
work to develop precise criteria when these problems occur, how they can be
detected, and how they can be remedied.

A generic mechanism that supports aspect orientation must provide nested
parameterization. Since an aspect is defined as a concern that cross-cuts a core,
weaving requires that many parts of the core are extended with different values
consistently. Until now, no generic mechanism for such extensions was known.
Our hope is that aspect weavers can be simplified with extensions of structured
hooks, at least for aspects which only depend on the core.

5 Implicit Hooks

So far we only allowed generic parameters which were declared to have a name
and a type in the meta model. However, the block structuring rules of a language
aid in identifying many implicit positions which have standard names. These can
be regarded as generic parameters which are implicitly defined by the language
report. For instance, Figure 1 contains two hooks which have been implicitly

150 Uwe Aßmann

defined by the semantics of a method: every method has an entry point, and one
or several exit points.

For such implicit hooks, we can introduce default names that need not be
declared by the component writer, but can be inserted automatically from a
component analyzer. Such a tool can mark up implicit hooks without human
intervention. Compare Figure 4 with Figure 1. Its markup can be derived auto-
matically if default names for method entry and exit are given.

Example 4. If extensions can address implicit hooks with their default names
aspect weavings become simpler. Consider the following extension which extends
Example 2 with a debugging aspect. In our simple case, the aspect wraps all
methods of the Chicken class with additional entry and exit code that prints
debugging output:

[["Chicken"]].findHook("Chicken.<method>.Entry").extend(
<<"System.err.println("enterMethod <method>");">>);

which results in the following component, still being generic:

class Chicken {
public Chicken () {
System.err.println("enterMethod Chicken()");

<sgeneric sname="SendEggs" feature="init" type="Statement">
egg.initalize();

</sgeneric>
}

public void produce() {
System.err.println("enterMethod produce()");
<sgeneric sname="SendEggs" feature="call" type="Call">
human.receive(egg);

</sgeneric>/>
}

public ˜Chicken () {
System.err.println("enterMethod ˜Chicken()");
<sgeneric sname="SendEggs" feature="destr" type="Statement">
initalize();

</sgeneric>/>
}

}

If a component system has a component reader that recognizes and marks
up implicit hooks automatically, transformations like the above are possible but
component writers need not declare hooks. Since an implicit hook is similar to
a join point in Aspect Oriented Programming which is immediately useful for

Beyond Generic Component Parameters 151

eat(<generic name=T type=Type/> what)
{{
 <generic name=Exit type=Return>return;</generic>
 if (!what.canBeEaten())
 <generic name=Exit type=Return>return;</generic>

 while (!what.isEmpty()) {
 bite(what);
 digest();
 }
 <generic name=Exit type=Return>return;</generic>
}}

Method.Entry

Method.Exit

Method.T

Fig. 4. Knowing the programming language semantics and naming conventions, im-
plicit hooks can be derived by a component reader.

aspect weaving. However, it also opens up the component to a larger extent, and
sacrifices information hiding. Hence, implicit hooks provide a very weak interface
notion, namely the default positions in a component that have been defined by
the programming language report. Of course, a component system need not use
implicit hooks, or can forbid them for particular components or extensions.

6 Extension to Other Component Languages

Since a markup language treats the underlying language as text the latter can
be exchanged. Of course, it can also be exchanged with XML languages. Then,
the markup XML schema becomes an XML name space that extends another
XML language naturally. What still has to be ensured is type safety, i.e., the
transformation facility has to know about the meta model of the XML language
and ensure type safe substitution and extension.

Also binary components can be made generic with our approach. A machine
language also has a meta model. Of course, this model is semantically not as
rich as that of its corresponding source language but lends itself to type-safe
substitution, markup, and hook abstraction. All concepts can be transfered:
parameterization of all meta objects of the machine language, markup with XML
or other mechanisms, grouping of several program parts into structured hooks,
set hooks, and finally, implicit hooks. It is obvious that a substitution machinery
is required which can handle binary representations.

This insight paves the way for a generic parameterization technology that is
independent of the underlying component language. If the substitution machin-
ery and the markup technology is chosen appropriately with the component lan-
guage, the parameterization machinery does not depend on them and can work
for different languages. It may very well be the case that we can build parameter-
ization frameworks which work for all programming and specification languages,

152 Uwe Aßmann

and which are parameterized with a markup technology, a meta-model, and a
type-safe substitution machinery.

7 Implementation

The COMPOST library realizes the component model of this paper for Java.
COMPOST consists of two layers. The lower layer is a Java transformation and
refactoring engine which can read java components, transform them, and pretty
print them again [ALN00]. It also ensures type safe substitution and extension.
In the upper layer called boxology, components, hooks, and simple bind and
extension operations are reified as objects. Components are called fragment boxes
and provide generalized genericity as outlined in this paper. Since COMPOST is
a standard Java library it can be used to write parameterization and extension
programs similar to those shown in this paper.

At the moment, COMPOST uses a different markup technology to XML.
Hungarian notation defines naming schemes for identifiers that convey addi-
tional semantics [SH91]. Hungarian notation is also used in other component
approaches, e.g., in Java Beans. Using these naming conventions for identifiers,
the COMPOST component reader finds declarations of hooks, automatically
marks up implicit hooks, and finally checks type-safe substitution with regard
to its Java meta model. At the moment, we are extending the concepts to XML
as a component language. The goal of this work is to provide a component
model for XML documents, and to unify software and document composition in
a uniform mechanism (uniform composition).

8 Conclusion

This paper has introduced, step by step, several extensions of generic type pa-
rameters. Once an indirection concept between the program elements of a com-
ponent and the generic parameter is introduced (hooks), components can be
parameterized more flexibly and also extended (generic program elements, struc-
tured generic parameters for grouping of parameter values, extension of implicit
hooks). As applications, protocol parameterizations, unforeseen extensions and
aspect weavings have been shown. Since the parameterization and extension
model is independent of the component language, it shows the way towards a
general genericity and extension framework.

References

[Ada83] International Organization for Standardization. Ada 83 Reference Man-
ual. The Language. The Standard Libraries, 1983.

[Ada95] International Organization for Standardization. Ada 95 Refer-
ence Manual. The Language. The Standard Libraries, January 1995.
ANSI/ISO/IEC-8652:1995.

Beyond Generic Component Parameters 153

[ALN00] Uwe Aßmann, Andreas Ludwig, and Rainer Neumann. COMPOST
home page. http://i44w3.info.uni-karlsruhe.de/˜compost, March 2000.

[Aßm98] Uwe Aßmann. Meta-programming Composers In Second-Generation
Component Systems. In J. Bishop and N. Horspool, editors, Systems Im-
plementation 2000 - Working Conference IFIP WG 2.4, Berlin, Febru-
ary 1998. Chapman and Hall.

[Bec99] Kent Beck. Extreme Programming Explained: Embracing Change.
Addison-Wesley, 1999.

[BNS+91] Lars Bak, Claus Nörgaad, Elmer Sandvad, Jörgen Linkskov Knudsen,
and Ole Lehrmann Madsen. Software Engineering Environments, vol-
ume 3, chapter ”An Overview of the Mjölner BETA System”, pages
331–362. Ellis Horwood, 1991.

[Bra92] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity
and Multiple Inheritance. PhD thesis, University of Utah, 1992.

[BST+94] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci,
and Marty Sirkin. The GenVoca model of software-system generation.
IEEE Software, 11(5):89–94, September 1994.

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Techniques, and Applications. Addision-Wesley, 2000.

[CM93] Shigeru Chiba and Takashi Masuda. Designing an Extensible Dis-
tributed Language with a Meta-Level Architecture. In O. Nierstrasz,
editor, Proceedings of the ECOOP ’93 European Conference on Object-
oriented Programming, LNCS 707, pages 483–502, Kaiserslautern, Ger-
many, July 1993. Springer-Verlag.

[KFD99] Shiram Krishnamurthi, Matthias Felleisen, and Bruce F. Duba. From
Macros to Reusable Generative Programming. In U. W. Eisenecker
and K. Czarnecki, editors, Generative Component-based Software Engi-
neering (GCSE), number 1799 in Lecture Notes in Computer Science,
Erfurt, October 1999.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopez, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In ECOOP 97, volume 1241 of Lecture Notes in Com-
puter Science, pages 220–242. Springer-Verlag, 1997.

[KRT87] S. Katz, C. A. Richter, and K.-S. The. PARIS: A system for reusing
partially interpreted schemas. In Proceedings of the 9th International
Conference on Software Engineering, pages 377–385. IEEE Computer
Society Press, 1987.

[LAB+79] B. Liskov, R. R. Atkinson, T. Bloom, E. B. Moss, R. Schaffert, and
A. Snyder. CLU reference manual. Technical Report MIT/LCS/TR-
225, Massachusetts Institute of Technology, October 1979.

[LKLLMM94] J. Lindskov Knudsen, M Löfgren, O Lehrmann Madsen, and B. Magnus-
son. Object-Oriented Environments - The Mjolner Approach. Prentice
Hall, 1994.

[LLStGMG98] Bil Lewis, Dan LaLiberte, Richard Stallman, and the GNU Man-
ual Group. GNU Emacs Lisp Reference Manual. GNU Free Software
Foundation, for emacs version 20.3, revision 2.5 edition, May 1998.

[Mad89] William Maddox. Semantically-sensitive macroprocessing. Technical
Report CSD-89-545, University of California, Berkeley, 1989.

[Pre95] Wolfgang Pree. Design patterns for object-oriented software develop-
ment. Addison-Wesley, New York, ACM press, 1995.

154 Uwe Aßmann

[SH91] C. Simonyi and M. Heller. The Hungarian revolution: A developing
standard for naming program variables. Byte Magazine, 16(8):131–132,
134–138, August 1991.

[Str97] Bjyrne Stroustrup. The C++ Programming Language: Third Edition.
Addison-Wesley Publishing Co., Reading, Mass., 1997.

Appendix 1: XML Schema for Hook Markup

<schema xmlns="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault="unqualified" attributeFormDefault="unqualified">

<element name="generic" type="Hook"/>
<element name="sgeneric" type="StructuredHook"/>
<complexType name="Hook">
<sequence>
<element name="name" type="string" minOccurs="1" maxOccurs="1"/>
<element name="type" type="JavaType" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>
<complexType name="StructuredHook">
<sequence>
<element name="sname" type="string" minOccurs="1" maxOccurs="1"/>
<element name="type" type="JavaType" minOccurs="1" maxOccurs="1"/>
<element name="feature" type="string" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>
<!------ The used fragment of the meta model of Java ---------!>
<complexType name="Type"/>
<complexType name="Statement"/>
<complexType name="Call"/>
<complexType name="SynchModifier"/>
</schema>

	1 Introduction
	2 Generic Program Elements
	3 Structured Generic Parameters
	4 Set Hooks for Component Extension
	5 Implicit Hooks
	6 Extension to Other Component Languages
	7 Implementation
	8 Conclusion
	References
	Appendix 1: XML Schema for Hook Markup

