CC4J — Code Coverage for Java
A Load-Time Adaptation Success Story

Giinter Kniesel! and Michael Austermann?

! University of Bonn, Institute of Computer Science III,
Romerstr. 164, D-53117 Bonn, Germany,
gk@cs.uni-bonn.de
2 SCOOP Software GmbH, Am Kielshof 29, D-51105 Kéln, Germany,
maustermann@scoop-gmbh.de

Abstract. Code coverage and tracing are extremely important for qual-
ity assurance in large scale software projects. When Java components are
required to be deployed in distributed dynamic environments, e.g. as a
part of an application server, load-time adaptation is the only practicable
method capable of instrumenting these facilities. Load-time adaptation
is, however, a relatively new technology whose scalability in industrial
strength projects is so far unproven.

This paper reports on the development of a quality assurance tool, CC4J,
which has been implemented using novel load-time adaptation tech-
niques. Our evaluation, performed in the context of a large-scale, de-
ployed, Java software project, shows that this is a resoundingly success-
ful approach. The system’s core has been implemented by one person in
less than two weeks. Within less than four weeks after its first use CC4J
was adopted by the entire project and the quality assurance department
recommends adopting the tool in other projects.

1 Introduction

The work reported in this paper has been carried out in a large scale software
project. The goal of the project is the development of a distributed system in
the domain of electronic payment transactions, known for its extremely high
quality and safety-requirements. These are reflected in the contract with the
customer, which imposes, as a key quality measure, 100% code coverage during
testing. This means that all unit tests together must exercise every line of code.
Another important quality assurance aspect is the tracing of system activity at
different levels of detail. This makes the overall flow of control comprehensible
and verifiable during functional testing and deployment.

Code coverage and tracing functionality is needed in different combinations
in different versions of the system. For instance, realistic performance tests re-
quire that no code coverage data is collected but tracing is still enabled at the
same level as in the final system. Therefore, different versions of the functional
components, instrumented for different purposes, are required. In general, the
number of possible variants grows exponentially with the number of different

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 155-{[69, 2002.
© Springer-Verlag Berlin Heidelberg 2002

156 Gilnter Kniesel and Michael Austermann

available adaptations. Generating these statically would be prohibitive. Even
worse, many of these variants might be used just once since after the test had
been performed, changes in the code would automatically render them invalid.

For these reasons, we need means of instrumenting the code base “on the
fly” depending on the current suite of tests and the current quality assurance
measure (code coverage, tracing at different levels, etc.).

The system is currently being developed by a team of more than 100 software
engineers at T—Systems@. Its component-based J2EE architecture makes it a good
candidate for the evaluation of component adaptation techniques in a realistic
environment.

Summary In the context of component-based development load-time adaptation
of byte code can be regarded as a key technology. Components are delivered
in binary format — so adaptation of byte code is ultimately required. This can
be performed statically or dynamically, at load-time. Static adaptation has the
advantage of adding no load-time penalty to a program’s execution. However,
static instrumentation might become impractical if many different adaptation
variants are to be managed. Moreover, it is inapplicable if dynamic component
loading is possible and the name of dynamically loaded classes is determined at
run-time, via reflection. Then the only point where it is feasible to determine
and adapt all components that are actually used by a program is during the class
loading process.

The paper is structured as follows. In section[2 we review the state of the art
of code coverage and tracing solutions. In section Bl we give a short introduction
to JMangler, the employed tool for load-time adapation of Java class files. In
section [4] we introduce the developed code coverage tool. Its implementation by
load-time adaptation is described in section Bl The experience from the deploy-
ment of CC4J in the project is reported in section [6] Section [7] comments on the
related work before concluding in section

2 State of the Art

It is common practice to manually insert log statements into code. However,
logging the execution of every line of code this way is prohibitively expensive
and prone to common programming errors. In addition, the temporary nature of
unit tests prohibits the integration of test code and related logging statements
into the code that is being tested because in the deployed code bases all test
code should be removed. On the other hand, unit tests contained in separate
modules cannot be aware of every line of code that they test nor can they report
on individual lines of code. In other words, there is no alternative but to keep
instrumentation separate from the underlying system. This is particularly the
case in the context of components, whose source code is unavailable.

In the following we first state the practical requirements of the project and
then review the three categories of basic approaches that might be applicable:

! T_-Systems is the information technology division of Deutsche Telekom.

CC4J — Code Coverage for Java: A Load-Time Adaptation Success Story 157

— commercial off-the-shelf systems
— aspect-oriented languages
— aspect-oriented tools

2.1 Application Requirements

The following specific requirements were the main criteria for choosing one par-
ticular solution to be applied in the project.

Platform Independence. The system must run on any Java 1.3 compliant
virtual machine, at least on Windows N'T /2000 and SUN Solaris platforms.

Arbitrary Modifications. Implementing tracing and logging requires the abil-
ity to add new helper classes, extend existing classes by new methods and
fields and — most importantly — to modify the byte code of existing methods.

General Applicability. The adaptation tool must be applicable to any legal
Java program.

Component Based Architecture. Tracing and logging are orthogonal as-
pects of adaptation which should be implemented as independent compo-
nents.

Easy Configuration. Application of different adaptations to the same classes
should be possible without any changes in program code.

2.2 Commercial Off-the-Shelf Tools

The need for a solution available at short notice suggested an evaluation of com-
mercial off-the-shelf tools in the first place. However, the choice of code coverage
tools for Java is quite limited, with Rational PureCoverage and Tangent JProbe
Coverage being the only realistic alternatives. Rational’s tool is inapplicable,
because it only supports Java applications on Windows platforms. JProbe Cov-
erage is platform-independent and available as part of the JProbe Suite.

Neither tool provides tracing support. Even if they had done so, the related
licence fees would still have been prohibitive given that tracing must also be
available during deployment (in thousands of installed devices). We know of no
other commercial tools that support incremental automatic instrumentation of
code for tracing purposes.

Obviously, existing tools are unsuitable in the context of our project and the
only way to achieve our goals was to implement our own load-time adaptation
applications using a suitable language or tool.

2.3 Aspect-Oriented Languages

Novel aspect-oriented programming language extensions for Java [Asp0l] are
platform independent and enable modifications of existing method code. How-
ever, their high abstraction level does not allow them to refer to concepts such as
the individual lines or statements of a program. Without this ability, we cannot
insert instrumentation code that logs the execution of control flow statements
(if, while, ...).

158 Gilnter Kniesel and Michael Austermann

2.4 Aspect-Oriented Tools

The required level of detail can be addressed by aspect-oriented tools that sup-
port a lower level of abstraction. In particular, tools for the load-time trans-
formation of Java class files come to be regarded. We are aware of only four
approaches that go beyond the mere representation of Java class files by pro-
viding complete solutions for the integration into the class loading and linking
process of the Java platform:

— Binary Component Adaptation [KHIS)]

— Java Object Instrumentation Environment [CCK9S)]
Javassist [Chi00]

JMangler [KCAOQ1], [Aus00]

A detailed comparison of these tools can be found in [KCAOQI]. It shows that
only JMangler is applicable in the context of the requirements listed above. In
particular,

— BCA has been integrated into the implementation of the Java Virtual Ma-
chine of JDK 1.1 for Solaris, and therefore cannot be used with other JVMs.
Furthermore, it does not allow adaptation at the level of individual state-
ments.

— JOIE and Javassist cannot adapt applications that employ their own class
loader, thus violating the general applicability requirement.

JMangler was therefore the obvious candidate for our evaluation. An introduc-
tion to JMangler is given in the next section.

3 JMangler

JM anglerﬁ is a Java framework for transformation of class files at load-time. Pro-
grammers can write their own transformer components that analyse the classes
on target and decide which concrete transformations are to be carried out. Mul-
tiple transformer components, or simply transformers, can be deployed simulta-
neously. JMangler provides the ability to combine their transformations and to
perform these transformations on all classes of a program (Figure [[)). All trans-
formations that respect binary compatibility [GJSB00] are supported, including
arbitrary modifications of method bodies.

JMangler plugs neatly into any Java 1.3 platform being able to run on any
compliant JVM and to work with any legal Java program. It is configured by an
XML file that includes information on the actual transformer components that
are to be applied.

In the following sections we outline JMangler’s basic concepts, and describe
how JMangler is integrated into the Java platform. For more detailed descrip-
tions we refer to [KCAO1], [Aus00]

2 See http://javalab.cs.uni-bonn.de/research/jmangler/

CC4J — Code Coverage for Java: A Load-Time Adaptation Success Story 159

Original
Class Files w

Class Loader " Transformer
System Components
Adapted 1
Class Files I m H
Java Virtual
Machine

Fig. 1. Architecture of the JMangler Framework

3.1 Basics

JMangler supports all transformation of class files that do not violate binary
compatibility [LY99]. In particular, it supports:

— addition of classes, interfaces, fields and methods;

— changes to a method’s throws clause;

— changes to a class’s extends clause that do not reduce the set of direct and
indirect superclasses;

— changes to a class’s implements clause that do not reduce the set of direct
and indirect superinterfaces;

— the addition and modification of annotations that respect binary compati-
bility;

— changes to method code.

All transformations mentioned in the first five items of this list are called
interface transformations. The addition of a method including an initial method
body is still regarded as an interface transformation. Changes to method code
are called code transformations.

Transformers are Java classes that implement specific interfaces (Interface-
Transformer and CodeTransformer). Implementation of these interfaces can be
performed using JMangler’s API. It supports three types of operations:

— analysis of class files, in order to determine whether a specific transformation
is applicable,

— interface transformations and

— code transformations.

A transformer component that implements the operations of the Interface-
Transformer interface can perform one or many related interface transforma-
tions. The same is true for code transformations. A transformer can play both
roles by implementing both interfaces. Thus it is possible for one component to
provide a consistent set of related interface and code transformations.

160 Gilnter Kniesel and Michael Austermann

3.2 Composition of Transformers

JMangler enables composition of independently developed transformers in the
sense that multiple transformers can be jointly applied to the same program. A
user who wants to transform a program at load-time can specify this easily in a
configuration file. This file has a simple XML-based syntax describing:

— the set of interface and code transformers to be applied;
— parameters to be passed to the transformers;

— the ordering of code transformers;

— and some other options (debugging, etc.).

Different application-specific transformers can be easily composed from the same
set of basic transformers. Each composition specification can be stored in a
different XML file. Switching between different configurations simply requires
providing a different file name as a parameter to the invocation of JMangler:

jmangler <configFile> <main> <parameters>

This invocation starts the JVM, loads JMangler and the transformers specified in
the configuration file and then initiates execution of the program to be adapted.

In the context of the electronic payment transactions project, this open archi-
tecture makes it possible to develop transformers for code coverage and tracing
separately. Further transformers, even from third parties, can be integrated later,
when needed. This approach protects the coding resources already invested while
still providing options for further code evolution and extension.

Last, but not least, JMangler is freely available under the terms of the
GNU LGPL (http://www.gnu.org/copyleft /lesser.html), which explicitly allows
for the development of commercial applications.

4 CC4J

It is not the purpose of this paper to describe all the applications that have been
developed using JMangler but to focus on one representative case that proves the
applicability of load-time transformation in a commercial context. Therefore we
will concentrate henceforth on one application, Code Coverage for Java (CC4J).

CC4J’s main responsibility is to determine which lines of code have or have
not been executed during one run of an application. We define, that a line of
code has been executed, if the flow of control has reached the line at least once.
It does not matter if the execution has failed to complete successfully or if an
exception has been raised.

CC4J consists of the following subcomponents:

Core. The CC4J backend is implemented as a load time transformer. It instru-
ments classes to collect coverage data for one test run. The code coverage
data is stored in a Code Coverage File (CCF).

Merger. This component combines the CCFs of different test runs into one file
in the same format. This is needed to gain an overview of the total coverage
achieved by all test runs.

CC4J — Code Coverage for Java: A Load-Time Adaptation Success Story 161

o x|
File Object Options Help
o @®
Object [Unused Used Used (%)
¢ S Al | 101 17 86.0
@ “g de.scoopgmbhfigures.BaseFigure 9 0 100.0
@ % de.scoopombh figures. Circle 13 2 ar.0
=@ Circlef) 3 1] 100.0
= computeAreal) 2 0 100.0
=@ computePerimeter)) 2 1] 100.0
L = getParameters(] 2 75.0
& %% de scoopgmbhfigures.FigureTest 22] 810
(o4 de.scoopgmbh.figures.Hexagon - Error: Class not present in 13 2 a7.0
@ “g de.scoopambh figures. InvalidFigureParameterException 2 2 a0.0
@ % de.scoopgmbhfigures.Rectangle 18 2 90.0
e de.scoopgmbhfigures Triangle 24 4 86.0
Ok

Fig. 2. Screenshot of the CC4J GUI

Report Generator. The report generator transforms CCFs into human-read-
able reports (for instance, in HTML format for the project intranet or as
postscript for printing).

GUI. The graphical user interface (Figure B) visualizes code coverage and high-
lights unexecuted lines in the sourcecode.

These components and their interactions are depicted in Figure Bl By default,
the core collects coverage data for every loaded class. Collection of coverage data
for test classes can be prevented by specifying them in an exclusion list. This is

done in the configuration file which is passed as parameter to the invocation of
CC4J.

CC4J Report

class files Generator CC4J GUI

CC4J Core

v

instrumented
class files

CC4J Merger

Java Virtual
Machine

coverage file of an earlier run

Fig. 3. Architecture of CC4J

162 Gilnter Kniesel and Michael Austermann

For the code coverage files, CC4J uses a simple XML based format, which
can be further processed by standard tools. This promotes easy extensibility.
Appendix [B] shows the coverage file generated by CC4J when executing the
ubiquitous “Hello World” application (Appendix [Al.

5 Implementation Using JMangler

Taking advantage of JMangler’s component architecture, CC4J has been realised
in the form of implemented as a combined interface and code transformer com-
ponent (Figure [). In the following, we will focus on two main aspects of its
implementation:

— Determination of log points
— Efficient storage of logging data

5.1 Determination of Logging Points

Since CC4J adapts classes at load-time, one has to determine where to insert
logging code into the byte code sequence of methods. Those points within byte
code sequences at which logging data has to be collected, we name logging points.

Fortunately Java’s class file format [LY99] helps in determining logging points.
By default, Java compilers generate line number and source file information for
each class. They store it in the source file attribute and line number table at-
tributes of class files. This information is intended to be used by debuggers for
mapping a method’s byte code to the corresponding lines of code in the source
file (Figure [5).

class files

Class Loader /-I.I CcC4J
System I _:_:_11'|Transformer
. v

instrume_nted »(CCF
class files

Java Virtual
Machine

Fig. 4. Implementation of CC4J with JMangler

CC4J — Code Coverage for Java: A Load-Time Adaptation Success Story 163

Source file Byte code
1 public class Sample { Method void sayHello()
2 void sayHello() { 0 getstatic #8
3 System.out.println("Hello"); 3 ldc #1
4 return; 5 invokevirtual #9
5 } 8 return
6 }

LINE NUMBER‘PROGRAM COUNTER
3 0
4 8

Fig. 5. Method (left) that prints “Hello”, with its byte code (right) and line number
table (bottom).

For the determination of logging points the CC4J transformer analyses the
line number table of each method in a class file. The logging point for a given
(source code) line number is the corresponding program counter value in the
line number table. For instance, in Figure [the logging point for line 3 is at
program counter value 0.

Discussion. Since line number information is generated by default, the solution
described above is sufficient in most cases. In the project for which CC4J has been
developed initially, it suffices always. Still, one could argue that the line number
information might not be available if explicitly turned off. Determining code
coverage in such cases requires a transformer component that logs the execution
of every byte code instruction or statement. Detecting individual source code
statements in byte code is a more complex task than the line number based
logging, which could be realized if required.

One could also ask why it is necessary to instrument every statement if the
goal is to test whether all statements have been executed. Consider a basic
block containing several statements. If control reaches the last statement, then
all previous statements must have been executed. Control can exit in the middle
of a basic block only if an exception is thrown. It might appear that a big
improvement in performance could have been obtained by using this property.
However, to determine whether an exception has occurred each basic block has
to be wrapped with a try-catch statement. We implemented and compared both
approaches and found out that the apparent optimization results in a more
than double increase of execution time. This is because the inserted try-catch
statement inhibits standard optimisations of the HotSpot JVM.

164 Gilnter Kniesel and Michael Austermann

5.2 Efficient Storage of Logging Data

At each logging point some logging data has to be stored. The overall runtime
overhead of determining code coverage is almost exclusively determined by the
costs of storing the logging data. Therefore, this task must be highly optimized
to keep the runtime overhead small.

One option is to provide a central logging object. Calls to this object could
result either in immediate writing to a log file or could be buffered in a data
structure, e.g. a hashtable, for the subsequent writing of the log file. This ap-
proach has the advantage of simplicity and makes it easy to change the policy
governing the writing of the log file. However, it has the disadvantage of adding
one avoidable level of indirection to every logging operation. This would affect
every line of code to be executed.

Another possibility is to let every class manage its logging data itself. For
this distributed approach, every class is adapted to contain a buffer whose size
corresponds exactly to the number of logging points for methods of this class.
Logging can access this data structure without any indirection. Every log point
writes to exactly one entry in this buffer.

CC4J is implemented using the distributed approach because it saves storage
and minimises the increase in running time.

The logging data is saved to secondary storage in CCF format when the
virtual machine begins its shutdown sequence. This avoids the high costs of con-
tinuous output to secondary storage and also prevents long-running applications
from writing endless log files with mostly redundant entries.

For environments that are extremely constrained in memory we also experi-
mented with a data structure that reduces the memory costs to the 32nd part.
However, this results in increased run-time costs since thread synchronisation,
required to prevent race conditions, is involved in the execution of every line of
code.

6 Evaluation

When the suggestion to implement code coverage and tracing by load-time trans-
formation of Java byte code was first put forward in the project, it received much
skepticism. It was doubted that a novel technique and its implementation as a
recently available research tool could be applied successfully in an industrial
environment. In particular, the responsible project officers required proof of:

feasibility,

timeliness of delivery,

— cost-effectiveness,

— smooth integration into the development cycle and
— efficiency.

To this end, it was decided to create CC4J as a proof of concept on condition
that it had to be done with minimal resources (in terms of manpower). In the

CC4J — Code Coverage for Java: A Load-Time Adaptation Success Story 165

following, we report on the required manpower (which determines the timeliness
of delivery and cost-effectiveness), performance measurements, and the current
use of CC4J within the project development cycle.

6.1 Implementation Effort

The system’s core, consisting of the JMangler transformer component described
above, has been implemented by one person in less than two weeks.

6.2 Application

Evaluation of CC4J in the project was first conducted by a single programmer,
who used the tool to perform automated nightly unit tests of his code including
full coverage data collection. At the end of all test runs, the collected coverage
data was automatically merged. The results were inspected with the CC4J GUI
on the following day to identify additional tests that would include previously
uncovered code.

This approach was so successful that it was adopted by the entire project
within less than four weeks after the first use of CC4J. Currently, the CC4J
suite is being deployed as the official code coverage tool of the project for all
developed Java code, including components that run within application servers.
The quality assurance department of T-Systems recommends adopting the tool
in other projects.

6.3 Run-Time Performance

The run-time impact of class file instrumentation is illustrated by an example
employing SUN’s Java compiler and different project subsystems running on
Oracle’s TAS Application Server.

Javac. The javac compiler contained in the JDK 1.3 consists of 143 classes
that compile to 582 KB of byte code. We measured the performance of javac
when compiling itself on an AMD Athlon 1GHz processor with 384 MB of main
memory, running under Windows 2000. During the measurement no other user
processes were active.

The non-instrumented version of javac compiled its own source within 3.2
seconds. Enabling the collection of code coverage data, the compilation time was
7.3 seconds, which is an increase of 128%. This includes the overhead resulting
from the load-time adaptation (in this case the determination and insertion of
logging points).

To determine the overhead resulting exclusively from the collection of code
coverage data, we used a JMangler option to dump the transformed classes. Exe-
cuting these dumped classes, it is possible to measure the pure run-time overhead
without the influence of the adaptation process itself. For these dumped — already
adapted — classes the compilation time was 4.0 seconds. This is an increase of

166 Gilnter Kniesel and Michael Austermann

just 25%, which is remarkable, given that the instrumented application executes
additional instructions for every line of the original code.

Another remarkable experience was that it is more important to generate
code that does not inhibit standard optimisations of the HotSpot JVM than to
reduce the number of inserted instructions (see [5.]).

Applications on Oracle IAS. The results reported above were compared to
a typical regression testing scenario of the project. We tested a subsystem with
412 classes that compiled to 1,3 MB of byte code. Automatic unit testing of the
whole system took 503 seconds without instrumentation and 887 seconds with
CC4J. This is an increase of 76%.

We were also interested in the influence of CC4J on I/O-intensive server ap-
plications and found out that it is negligible. There was no measurable difference
in the throughput of instrumented applications compared to the original ones.

The relatively low impact on run-time performance contributed to the ac-
ceptance of CC4J and to its fast adoption in the project.

7 Related Work

In addition to the tools and technologies discussed in section [2 there are several
existing and emerging Java APIs that are related to our project: reflection,
JVMPI and JPDA.

For a portable and generally applicable implementation of CC4J’s core func-
tionality the reflective capabilities of Java promote no assistance because they
do not allow programmatic modification of existing method code.

The information that can be gained by using the Java Virtual Machine Pro-
filer Interface (JVMPI)E is too coarse grained to be used for coverage or tracing.
Due to restrictions in JVMPI, one cannot record information about the execu-
tion of statements other than class instantiation, method entries, and method
calls.

The Java Debug Interface (JDI)[4 allows more detailed examination of run-
ning programs but does not allow for customization of the gathered information.
For instance, tracing should ideally provide application-specific semantic infor-
mation (e.g. reporting “Missing payment.” instead of “Return from method m in
class C of package P”). Furthermore, permanently running deployed applications
in debug mode in order to gather relevant tracing information is no practical
option, given the performance impact of the debug mode in JDK 1.3.

Last, but not least, the recent implementation of dynamic class exchange
[Dmi0T] as an extension of the Java Platform Debugger Architecture (JPDA) is
a powerful complement to JMangler’s capabilities but no replacement. Support
for dynamic class redefinition, when in a new class version only method bodies
are allowed to change, is available in the HotSpot JVM, which is included in

3 See http://java.sun.com/j2se/1.4/docs/guide/jvmpi/index.html)
* See http://java.sun.com/j2se/1.4/docs/guide/jpda/)

CC4J — Code Coverage for Java: A Load-Time Adaptation Success Story 167

the JDK 1.4 releasd. However, HotSwap is just for redefinition of classes that
have already been loaded. Its RedefineClasses() method takes just old and
new class versions, and it is the programmer’s responsibility to prepare the new
version (in the form of a complete .class file). Interception of loaded classes
and their modification is not a part of the HotSwap API.

8 Conclusions and Future Work

In this paper we have reported on the development and evaluation of a com-
mercial code coverage tool, CC4J, which is implemented using the JMangler
load-time adaptation framework.

Our evaluation has shown that load-time adaptation is a mature technol-
ogy. Its applicability for the timely and cost-effective implementation of quality
assurance measures has been proven within a large scale industrial project.

Load-time transformation of byte code has the potential to support arbi-
trary adaptations beyond those required for quality assurance during software
development. In the context of component-based development this can even be
regarded as a key technology because components are delivered in binary format
and often deployed in dynamic environments like application servers.

Our run-time performance evaluations indicate that JMangler is immediately
useful in scenarios where adaptation is performed before deployment at the cus-
tomer (like in our quality assurance task) and during deployment of long-running
applications. In the first case, the time spent on adapting classes is not an issue
at all. In the second case, it just accounts for a small percentage increase of
overall run-time.

In contrast, use of JMangler for adaptation of short-running and time-critical
applications would require further optimization of the framework. The goal must
be to lower the fixed costs of system startup and tune the API for class file anal-
ysis and modification. Corresponding improvements of JMangler are subject of
ongoing work. An interesting option for future work is to take advantage of
the current and upcoming ability of Java to perform dynamic class replacement
[Dmi01]. This would allow instrumented byte code to be added just when needed
and to be removed again later on. Regarding CC4J, a possible future enhance-
ment might be the support of a finer grained notion of code coverage. For exam-
ple, a single source line may sometimes contain a number of statements. There-
fore, logging the entry point to individual statements might be technically more
adequate. However, this would require significantly more sophisticated analysis
of byte code.

Acknowledgements

Misha Dmitriev helped us understand the relation of JMangler to the HotSwap
project at Sun Microsystems and contributed many insightful comments on tech-
nical aspects and writing style. We are further indebted to Tom Arbuckle Pascal

5 See http://java.sun.com/j2se/1.4/docs/guide/jpda/enhancements.html)

168 Gilnter Kniesel and Michael Austermann

Costanza and the anonymous reviewers for careful proofreading and numerous
suggestions that significantly improved the paper and the quality of our English

writing.

References

[Asp01] Aspect oriented software development home page. http://aosd.net, 2001.

[Aus00] Michael Austermann. Ladezeittransformation von Java-Programmen. Mas-
ter’s thesis, Universitdt Bonn, Institut fiir Informatik III, 2000.

[CCK98] Geoff A. Cohen, Jeffrey S. Chase, and David L. Kaminsky. Automatic pro-
gram transformation with JOIE. In Proceedings of the USENIX 1998 Annual
Technical Conference, pages 167-178, Berkeley, USA, 1998. USENIX Asso-
ciation.

[Chi00] Shigeru Chiba. Load-Time Structural Reflection in Java. In Elisa Bertino,
editor, Proceedings of ECOOP2000, LNCS 1850. Springer, 2000.

[Dmi01] Mikhail Dmitriev. Towards flexible and safe technology for runtime evolution

of java language applications, 2001. In proceedings of Workshop on Engineer-
ing Complex Object-Oriented Systems for Evolution (ECOOSE) at OOPSLA
2001, http://www.dsg.cs.tcd.ie/ecoose/oopsla2001 /papers.shtml.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

[KCAO1]

[KH98]

[LY99]

Specification Second Edition. Addison-Wesley, 2000.

Giinter Kniesel, Pascal Costanza, and Michael Austermann. JMangler - A
Framework for Load-Time Transformation of Java Class Files. In Proceed-
ings of International Workshop on Source Code Analysis and Manipulation
(SCAM). IEEE Computer Society Press, 2001.

Ralph Keller and Urs Hélzle. Binary Component Adaptation. In Eric Jul,
editor, Proceedings ECOOP ’98, LNCS 1445, 1998.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification
(2nd Ed). Java Series. Addison Wesley, 1999.

A The Hello World Application

public class HelloWorld {
public HelloWorld() {
super () ;
return;

}

public static void main(String[] args) {
System.out.println("Hello World!");
return;

}

B Sample Code Coverage File

This section shows the coverage file generated by CC4J when executing the
“Hello World” application printed in Appendix [Al

CC4J — Code Coverage for Java: A Load-Time Adaptation Success Story 169

<?7xml version="1.0" encoding="US-ASCII" 7>
<SCO0P_CC4J>
<SEQUENCE_QOF _CLASSES>
<CLASS name="HelloWorld" sourcefile="HelloWorld.java">
<METHOD name="HelloWorld()">
<LN 1="3" s="n"/>
<LN 1="4" s="n"/>
</METHOD>
<METHOD name="main([Ljava/lang/String;)V">
<LN 1="7" s="e"/>
<LN 1="8" s="e"/>
</METHOD>
</CLASS>
</SEQUENCE_QOF_CLASSES>
<ERRORLOG/>
</SCO0P_CC4J>

Each line of code in the source of a method results in a LN-tag in the coverage
file. The 1 attribute contains the corresponding line number, the s attribute
contains the status of this line. The value e represents executed, n represents not
executed.

	1 Introduction
	2 State of the Art
	2.1 Application Requirements
	2.2 Commercial Off-the-Shelf Tools
	2.3 Aspect-Oriented Languages
	2.4 Aspect-Oriented Tools

	3 JMangler
	3.1 Basics
	3.2 Composition of Transformers

	4 CC4J
	5 Implementation Using JMangler
	5.1 Determination of Logging Points
	5.2 Efficient Storage of Logging Data

	6 Evaluation
	6.1 Implementation Effort
	6.2 Application
	6.3 Run-Time Performance

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgements
	References
	A The Hello World Application
	B Sample Code Coverage File

