Scenario-Based Connector Optimization
An XML Approach

Welf Lowe! and Markus Noga?

! Vixjo universitet, MSI, Software Tech. Group, 351-95 Vixjo, Sweden,
welf.lowe@msi.vxu.se
2 Universitat Karlsruhe, Program Structures Group,
Adenauerring 20a, 76133 Karlsruhe, Germany,
noga@ipd.info.uni-karlsruhe.de

Abstract. Software components can be connected by XML process-
ing pipelines, which may perform adaptations. In our model, individual
pipeline stages serialize source data structures to XML, perform one or
multiple XSL transformations, transport the message to its destination
and finally deserialize it to target data structures. Implementation of
this model is open to optimizations. The present paper discusses two
such optimizations: symbolic execution and lazy evaluation.

1 Introduction

With new problems at hand, management used to ask, “Build or Buy” a solu-
tion? Today, this question only applies to smallish problems. For entire systems,
“Buy, Build and Integrate” has become the method of choice. That is, suitable
components are bought, the missing remainder is built and the entire system is
subsequently integrated.

This strategy separates system integration spatially and temporally from
component design. Mismatches between components from different vendors, and
between bought and custom-built components inevitably result. Thus, adapta-
tion of components has become essential.

In [B], we presented a lightweight XML middleware architecture that explic-
itly addresses the adaptation problem. We also described basic optimizations like
generator usage and intermediate structure omission. This article covers major
new optimizations for the system, symbolic execution and lazy evaluation. Both
are scenario-based: the former depends on the adaptation scenario, the latter on
the communication scenario at hand.

The next section briefly revisits the middleware architecture in [8] and basic
technologies it employs. Section Bl covers symbolic execution, while section Bldeals
with lazy evaluation. Section [} summarizes our results and outlines directions
for future work.

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 170-{[84], 2002.
© Springer-Verlag Berlin Heidelberg 2002

Scenario-Based Connector Optimization 171

2 Related Work

The first subsection summarizes basic XML technologies, most prominently
XPath [17] and XSLT [20]. The second subsection briefly revisits our middle-
ware architecture [8].

2.1 Basic Technologies

XML is a well-known storage format for depth-first preorder traversals of trees
[16]. There are various type description languages for XML tree nodes, among
them DTDs and the more expressive XML Schemas [I8/T9].

The Document Object Model, or DOM, provides an abstract, non-typed
interface to XML tree nodes [I5]. Its operations realize basic tree traversal and
manipulation operations. E.g., child, parent and sibling nodes can be accessed,
as well as attributes.

XPath is a query language for XML document trees [I7]. It is inspired by the
concept of path languages. XPath expressions are sequences of steps. Each step
projects a set of source nodes onto a new set, which is subsequently filtered.

Syntactically, steps consist of an optional axis, a selection and optional addi-
tional filters. Axes determine the projection direction: onto child nodes, parent
nodes, siblings, descendants, ancestors etc. If an axis is not specified, the child
axis applies by default. Selection filters the projected set by node name or type.
E.g., the Xpath expression parent:A/B/C selects C-children of B-children of
A-parents of the current node. The optional additional filters can be arbitrarily
complex predicates. Additionally, there are wildcards for element names “*” and
entire path fragments “//”.

XSL transformations, or XSLT's, perform maps on XML trees [20]. They are
inspired by rewrite systems: an XSLT is an ordered set of rules. They consist of
an applicability test, called match expression, and a body, which may contain
output statements, recursive rule applications and some additional elements of
functional programming.

Rules operate on a current node. They are checked for applicability in order
of their definition. The body of the first matching rule is executed. At points of
recursive rule applications, a sequence of new current nodes is selected according
to a select expression. These new nodes are processed in the same manner. The
transformation is initiated by applying the rules to the tree root.

In practice, the match expression is an XPath expression without axes. For
a positive match, it must return the current node if applied to the current node
or any ancestors thereof. Select expressions in recursive rule applications are
also specified as XPath expressions. In this paper, we simplify the rule body to
output statements and a single recursive rule application. We disregard the inner
structure of output statements.

2.2 Connection and Adaptation

For the purpose of this paper, we define components to be software artifacts
with typed input and output ports linked by communication channels called

172 Welf Lowe and Markus Noga

connectors. The notions of ports and connectors are known from architecture
systems [L33]. The problems solved by connectors are wide spread in general;
[10] gives an overview. They may be as complex as most components, and thus
require the same amount of consideration in design and implementation, cf. [14].
On the design level, we have explicit connector entities with a formal semantic
allowing for consistency checking, cf. [1]. On the implementation level, connectors
are executable first class entities allowing for reuse and composition, cf. [4].

However, we focus on special connectors with limited problems to solve. We
assume connectors to be

— point-to-point data paths with in- and out ports known at compile time,

— executable in the sense that they implement stateless data transformation
functions (adaptations) also known at compile time, and

— language independent as they do not require sender and receiver component
to be implemented in the same programming language.

In this limited scenario, there is no need for explicit connector objects in the
production code. Instead, we try to eliminate them to increase the system per-
formance. Therefore, connector code fragments can be generated from the con-
nector specification and merged into the sender and receiver component code.
This meta-programming technique is known as “grey-box-connection”, cf. [2]
where it is used to adapt method calls. It is generalized in [6]. That work shows
the generation of connectors adapting the synchronization and activity of compo-
nents using abstract specifications. The generated adapter fragments are woven
into the sender and receiver components and thus disappear from the production
code as first class objects.

In the present paper, we use a similar approach for connectors adapting the
exchanged data. The required and provided parameters of a communication are
specified with XML Schema specifications, the adaptation with XSLT scripts.
The specific runtime environment and the generator tools are described below.

2.3 Middleware Architecture and Generator Tools

The middleware architecture in [8] builds on the above model. Components are
software artifacts with typed input and output ports. Connectors can perform
adaptations. The system is strongly typed and statically type safe.

At runtime, our middleware serializes output port data to an XML wire
format. Adapting connectors perform XSLTs on the wire format. Input ports
parse the wire format and reconstruct the corresponding object graphs. Fig. [l
shows adapted communication between two components at runtime.

The wire format is not generic, but derived from the port types using one of
the schemes in [7] or [II], which map data types to DTDs and XML Schema,
respectively. This approach preserves strong typing and static type safety in the
XML representation.

As types are known at deployment time, our middleware analyzes the com-
ponent sources at that point. Using a metaprogramming system, we generate

Scenario-Based Connector Optimization 173

Producer Consumer
outPort||. XML Nxsit S XML S G port
Serializer, Parser

Fig. 1. Adapted communication between components.

specific wire format descriptions, as well as serializers, transformers and deserial-
izers optimized for these formats. These fragments are woven into the component
sources. [9] discusses code analysis and generation in detail.

3 Symbolic Execution

Symbolic execution jointly preprocesses transformations and document types
given as DTDs or Schemas. If static analysis can guarantee that parts of the
document type are never visited by a transformation, serialization may safely
omit those parts of the document. Conversely, if static analysis detects that a
rule cannot match on documents of the given type, that rule test can safely be
omitted. The efficacy of these omissions depends on the adaptation scenario.
Their impact is obviously the largest for filtering adaptations which omit large
amounts of data.

We start with an overall view. Static preprocessing initially clones generic
programmatic representations of the rules for each node type and possible gram-
matical context. We then eliminate inapplicable rules based on match expres-
sions. Using tight conservative approximations with regular grammars, the select
statements are then refined to precisely defined document traversals. Invocations
of locally inapplicable match rules are removed. Together, this yields a conser-
vative approximation of the document type parts actually visited.

Now, we are ready to discuss the process in more detail. Given routines
implementing the XSLT match and select operations described in [Z], each
rule » with match m,., output o, and select expression s, can be expressed as
in Algorithm [l which operates on a current node n. The main routine performs
the entire XSL transformation when invoked on the document root node d.

If our document nodes are typed, unlike DOM, we can clone these algorithms
with respect to node types. For each node type E we define a class classg. In
object-oriented terms, the transform m, functions become methods operating
on the current object this instead of a parameter node n, cf. Algorithm
Note that the recursive invocation of transform is now restricted to transform
methods actually defined in the class of the target node n’, cf. the inner loop.

Now we are ready to specialize the classg. We initially analyze match ex-
pressions. As stated in [ZJ] a match expression matches a given node if the
corresponding XPath expression returns the node when applied to the node or
any of its ancestors. Thus, based on the node type, we can determine whether

174 Welf Lowe and Markus Noga

Algorithm 1 (XSL Transformation Schema)
boolean transform, (Node n){
if match(n,m,){
output(n,o,);
NodeList nl := select(n,s,);
for (Node n’ in nl) {
inner: for (' in rules) {
if transform, (n’) break inner;

}
}
return true;
}
return false;

}
void main(Document d){
for (+' in rules) {
if transform, (d.rootNode) break;

}

Algorithm 2 (Specialized XSL Transformation Schema)
classg is
boolean transform,() {
if this.match(m.,) {
this.output (o) ;
NodeList nl := new NodeList := this.select(s,);
outer: for (Node n’ in nl) {
inner: for (+' in n’.rules) {
if n’.transform, () break inner;

}
}
return true;
}
return false;

}

boolean transform,, O{ ...

a given match expression must, may, or must not match. Algorithm [l in the
appendix defines this analysis. As they are guaranteed not to be invoked, we can
safely eliminate the transformation methods for all must not matches. Similarly,
all rules defined later than a must match can be eliminated.

If we clone a class for different document type contexts, may matches can
turn into must or must not matches. This reduces the number of methods. We
clone as long as the method count decreases. This procedure terminates even for
recursive transformations due to the bounded size of match expressions and the
bounded number of methods per class.

Scenario-Based Connector Optimization 175

We turn our attention to the select expressions. The select routine imple-
ments the selection of nodes for a given XPath expression and context node. It
proceeds by steps, projecting the current node sequence along the given axis,
e.g., to children, and filtering down the projection by name, type and additional
criteria. select returns a sequence of nodes ns ordered in document order, to
which recursive transformations are applied.

We conservatively approximate ns for each context node type E and all
contexts of £ with a set of formal languages, one per context. If the select
expression contains only this, child and descendants axes, our approximation is
context insensitive and the set contains exactly one langauge.

First, we consider individual axes. Let E be a node type and a be an axis.
Let approz(FE,a) be the context-free language that conservatively approximates
the mapping of E along a given the information in the document type. For the
default axis this, e.g., approz(E, this) = {r — E} with starting symbol r. The
algorithms M in the appendix compute approximations for nontrivial axes.

A step consists of an axis, a select expression and optional filters. If the select
expression specifies a concrete element type F, we can specialize the above axis
approximation for this step by replacing all terminals for element types E' # E
with e. If filters are present, we similarly replace all terminals £ with E | € as
they may be filtered out.

A select expression consists of multiple steps. We combine step approxima-
tions into select expression approximations by successively replacing element
type terminals with the grammar rules for the respective next step. If that
grammar defines the empty language, we effectively remove the corresponding
terminals completely. Algorithm [6]in the appendix defines the approximation of
steps and select expressions precisely.

If the approximation for a select expression is the empty language, recur-
sive invocations of transform are not required. We may skip the for loops in
Algorithm 2l In general, we could replace the outer: for loop by an acceptor
for the selection sequence language and specialize the recursive invocations in
the inner: for loop according to the rule set of the accepted element node
type. However, the efficacy of these optimizations is quite low. Experience with
database systems teaches that selection is by far the most expensive operation.
We will therefore use the above approximations to optimize select operations.

The bigger the node set generated by projection on an axis, the more ex-
pensive it is to compute. Thus, ancestor, descending, preceding, following are
generally more expensive than parent, child, sibling. We will attempt to replace
expensive axes with cheaper operations.

A node can only be part of a selection path if its approximation language
is non-empty. Otherwise, the final step in a selection cannot match, although
intermediate steps may generate large node sets. With our analyses, we can safely
skip their computation. Algorithm [in the appendix defines iterators searching
only those nodes that are potentially selected. The sequence ns is replaced by
such an iterator. The final result of all optimizations defined in this section is
sketched in Algorithm [3]

176 Welf Lowe and Markus Noga

Algorithm 3 (Optimized XSL Transformation Schema)
classg is
boolean transform,(){
if this.match(m,){
this.output (o) ;
Iterator a := new AxesIterator(azis(sr)); //Algorithms [Tl
a.init(this);
Iterator ns := new SelectionIterator(); //Algorithm [T
ns.init(a,selection path set(sr));
while ((n’:=ns.next()) !'= null){
for (v’ in n’.rules){
if n’.transform,s () break this loop;
}
}
return true;
}

return false;

}

boolean transform,, O{ ...

4 Lazy Evaluation

If only stochastic data about access profiles are available, static analysis fails.
Consider a common case: a component transfers documents to a viewer and
requires adaptation. A human navigating the transformed document visits only
fractions of it. However, we cannot statically determine which fractions.

In these stochastic cases, lazy evaluation is an alternative to eagerly trans-
forming and transmitting all outgoing data. The producing component is lazy
and transmits only a handle to the consumer. Upon actual access, the consumer
requests the required fragments from the producer, who partially transforms the
source and transmits the results.

The performance of this approach hinges on hardware scenarios and applica-
tion profiles. Before we consider how the XML transformation pipeline allows for
partial processing, we estimate the potential of the lazy approach with a model.

When comparing one large with many smaller messages, we must account
for the lag [of a transmission in seconds and the throughput ¢ of the channel in
kBit/s. A message of size m kBits requires 7 seconds where:

T(m) =714(m) =1+ % (1)

The application determines the data size m in kBits, the fraction f of the data
required on the remote side and the number n of unique accesses, i.e. the number
of fragments to transmit. With (IJ), we determine lazy and eager processing times

st fon) = (|24) ©)

Teager (m) - T(m) - 7—lazy(rfbv]-7 1) (3)
for a given hardware scenario (I,).

Scenario-Based Connector Optimization 177

Perhaps surprisingly, the tradeoff between eager and lazy processing is almost
independent of the hardware scenario for a given data size. Solving 7 1a,y (m, f,n) =
Teager (M) for a given m, we realize that only the product [t is relevant, which
varies little between LAN, WAN and modem scenarios. In short, what counts is
the amount of data that can be transmitted instead of waiting for the network.

Now that lazy evaluation is demonstrated to be effective, we still have to show
that it applies to the XML processing pipeline. Let us initially assume simple
connectors without transformation. Then, processing is limited to serialization,
transport and reification of an object graph.

Let ds and d;, resp., of class D be the root of the source and target data
graphs in question. On the remote side, D and recursively all depending classes
are extended by a private attribute ¢, and an access method m, per attribute
a of a class. ¢, indicates complete transmission and reification of a. m, checks
cq before access and triggers transport and reification of the object if necessary.
Additionally, we add remote access stubs to the producing side.

Initially, we serialize a shallow of d,, transport it to the consuming component
and reify it to d;. Whenever we initially access an attribute of d;, transport and
reification are triggered. Subsequent accesses are local.

Depending on the memory consistency model and on the communication
semantics, we may have to deep copy ds or block the execution of the source
component. Those requirements are independent of the communication opti-
mization, but outside our current focus. For a discussion, we refer to [6l5].

Objects accessed via different paths should be transported only once. This
is guaranteed by the same bookkeeping approach used in complete depth-first
transmission: the producer component maintains a hash table of serialized ob-
jects for the active session. The initial stub access (on the consumer side) re-
trieves an object o by triggering serialization of o (on the producer side). The
producer retains an id, the XML mapping of the shallow of 0 and a hash table
entry. The receiver maintains an array of deserialized objects by id.

Whenever the receiver accesses an object o’ containing an alias to o, we find
the the corresponding id in our hash table. Together with the shallow of o' we
transmit the id of 0. An receiver side access o’.0 does not trigger a communication
as o has been reified already. A simple lookup in the array of deserialized objects
with the id gets the required object. Figure [sketches this bookkeeping.

As our initial performance estimate shows, there are minimum transmission
sizes for any given hardware scenario. Thus, instead of transmitting a single
object shallow, we serialize and deserialize a copy of some level.

Finally, we consider the general case with transformations. For the sender
component, very little changes — it is irrelevant if a remote component access or
a transformation access triggers the serialization and transmission of some parts
of the data structure in question. We only transmit the id together with the first
serialization of an object.

Initially, we serialize a shallow of the root object dg, and start the transforma-
tion until the remote root object d; can be reified by the consumer. Depending

178 Welf Lowe and Markus Noga

Producer Consumer
Component Component
[T Jidhash | idamay]] 2 CE A E i —
dS df dS d[
stubs
) 0 o o o° o o 0
id hash | idarray[1 2 3 123 |idhash | idarray[] 2 3]
‘ .A
O O G O
0 0 o’ o

Fig. 2. Initial situation after root object transmission (top, left): d, is serialized and
refers to id 1, d: is deserialized and accessible by id 1. After the first access to d;.o
(top, right): o (id 2) is serialized and deserialized, respectively. After the first access
to di.o’ (bottom, left): o’ (id 3) is serialized and deserialized, respectively. Instead of a
stub for the access to o, o’ contains already the id of o (id 2). After the first access to
d:.0’ .0, i.e. the second access to o (bottom, right): with a look up in the id array, id 2
is replaced by the actual reference to o.

on the transformation script, this may already trigger the serialization of some
further parts of the sender side data structure.

Three observations lead to the lazy evaluation of the transformation: (i)
XSL transformations are functional. Invocations of the transform method, cf.
Algorithm [2 in the previous section, are free of side effects except output. (ii)
XSL may traverse the input document in an arbitrary fashion, although depth-
first is an important special case. They may cache intermediate results of any
size, but the output document is written in depth-first order. (iii) Our mapping
of data structures to XML traverses the data structures in depth-first order.

When we access an object o the first time, we trigger the transformations
to reify it. The next accesses to o are local (as discussed above). The transfor-
mation is performed only partially: the recursive call to transform is stopped
(and stored as a bound routine for later resume), whenever the output, cf.in

Scenario-Based Connector Optimization 179

Algorithm [2], indicates that we do not generate the shallow of o but some de-
scendants. We stop the main transformation process and store it as a bound
method if the shallow of o is complete.

Observation (i) guarantees we can postpone the recursive decent, observa-
tions (ii) and (iil) ensure a transformation will produce few other objects than
o. The candidates are objects accessible by an attribute of the current object
(siblings of 0) and objects accessible by an attribute of o (children of o). For
those objects, we captured a bound routine that can be resumed to get the ac-
tual object if accessed the first time. If we try to access an object for which a
bound routine was not captured, we resume the main transformation process.

5 Perspectives

Symbolic execution and lazy evaluation are highly promising optimizations. They
both eliminate transmission overheads. In a sense, the approaches are compli-
mentary: Symbolic execution applies to scenarios with static overhead, whereas
lazy evaluation applies to scenarios with stochastic overhead.

We have started to implement lazy evaluation. Although transformations are
not fully realized yet, initial measurements for lazy deserialization are highly
promising. We are confident that benefits will continue to unfold.

Symbolic execution is still pending implementation. Measurements on our
early XSLT compilers indicate that bookkeeping for node sets alone accounts
for some 40% of total execution time. Replacing them with simple iterators and
eliminating superfluous match tests should increase transformation performance
by a factor of two [12].

Future work will focus on implementation and full evaluation of our optimiza-
tions. Moreover, we aim to determine worthwhile optimizations by automatic
analysis of access profiles. Finally, we want to combine both approaches: lazy
evaluation could benefit from splitting the global adaptation into a sequence of
partial ones. To determine effective splits, we have to analyze the access profile
as well. Each partial adaptation could again be optimized with a more precise
approximation of the data structures and transformation rules involved.

References

1. Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, July 1997.

2. U. ABmann, T. Genfler, and H. Bar. Meta-programming Grey-box Connectors. In
Proceedings of the 33rd TOOLS (Europe) conference, 2000.

3. Len Bass, Paul Clement, and Rick Kazman. Software Architecture in Practice.
Addison Wesley, 1998.

4. Stéphane Ducasse and Tamar Richner. Executable Connectors: Towards Reusable
Design Elements. ACM SIGSOFT, 22(6):483 — 499, November 1997.

5. Dirk Heuzeroth, Thomas Holl, and Welf Léwe. Combining static and dynamic
analyses to detect interaction patterns. In IDPT, 2002. (submitted to).

180 Welf Lowe and Markus Noga

6. Dirk Heuzeroth, Welf Lowe, Andreas Ludwig, and Uwe Afimann. Aspect-oriented
configuration and adaptation of component communication. In Jan Bosch, editor,
Third International Conference on Generative and Component-Based Software En-
gineering, GCSE, page 58 ff. Springer, LNCS 2186, 2001.

7. W. Lowe and M. Noga. Component communication and data adaptation. In IDPT,
2002.

8. W. Lowe and M. Noga. A lightweight xml-based middleware architecture. In 20th
International Multi-Conference Applied Informatics, AI. TASTED, 2002.

9. W. Lowe and M. Noga. Metaprogramming applied to web component deployment.
In ETAPS Workshop on Software Composition, 2002.

10. Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a Taxon-
omy of Software Connectors. In International Conference on Software Engineering,
ICSE 2000. ACM, 2000.

11. M. Noga and W. Lowe. Data types and XML schema. Journal of Markup Languages
- Theory and Practice (to appear), 2002.

12. Tobias Schmitt-Lechner. Entwicklung eines XSLT- Ubersetzers. Universtitit Karls-
ruhe, IPD Goos, May 2001.

13. M. Shaw and D. Garlan. Software Architecture in Practice — Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

14. Mary Shaw. Procedure calls are the assembly language of software interconnection:
Connectors deserve first-class status. In D.A. Lamb, editor, Studies of Software
Design, Proceedings of a 1993 Workshop, pages 17-32. Springer, LNCS 1078, 1996.

15. Document Object Model. W3C, http://www.w3.org/DOM/, 2000.

16. Extensible ~ Markup Language (XML) 1.0. W3C Recommandation,
http://www.w3.org/TR/1998/REC-xm1-19980210, 1998.

17. XML Path Language. W3C Rec., http://www.w3.org/TR/xpath, 1999.

18. XML Schema Part 1: Structures. W3C Recommendation 2 May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502, 2001.

19. XML Schema Part 2: Datatypes. W3C Recommendation 2 May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-2-220010502, 2001.

20. XSL Transformations (XSLT). W3C Rec., http://www.w3.org/TR/xs1t|, 1999.

A Appendix with Algorithms

The following algorithms compute context free grammar rules that conserva-
tively approximate the result of mapping F along the axis. We denote terminals
representing element node types with capital letters.

The child axis of a node contains all its children in document order. Let cm
be the content model for E, and G(c¢m) the grammar rules generating cm, then:

approx(E, child) := G(cm) (4)

Let D ::= em(...,E,...) denote a DTD rule defining D whose content model
contains E. Then, the parent sequence is given by the following set productions
with start symbol r:

approx(E,parent) :={r — D | “D =:=cm(...,E,...)” € DTD — rules} (5)

Let F(cm) be the finite acceptor for a regular context model ¢m and G(F)
the corresponding grammar productions. The preceding-sibling (following-sibling)

http://www.w3.org/DOM/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/xpath
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-220010502
http://www.w3.org/TR/xslt

Scenario-Based Connector Optimization 181

axis contains siblings of the current node occurring before (after) in the docu-
ment. The ancestor (descendant) axis of a node contains all transitive parents
up to the root (transitive children). Algorithm [computes their approximations.
More complex axes can be built from these simple ones.

Algorithm [§] conservatively estimates the matches for individual transforma-
tion rules. It symbolically executes the matches on the DTD, traversing the path
expressions step by step starting with the last step e. e.sel denotes the selection
of this step, e.axis the axis and e. filter the presence of optional filter operations.
The algorithm simultaneously traverses the DTD from the element node type FE
of the context node up to the root R. It checks if a certain path must, may or
cannot match in a document conforming to the DTD.

Algorithm [l approximates possible element node sequences of selections s,
relatively to a sequence of root nodes defined by some axes. In- and output se-
quences are given as grammar productions. The algorithm symbolically executes
selection on the DTD, traversing the selection path step by step starting with
the first step e. For each step, the productions R are updated. Node types filtered
out by e.sel are removed. If e.filter marks the step as optional, all productions
are marked as optional. Now, the grammar reflects the sequence of selections
up to this step. If there are no steps left, we are done. Otherwise, we have to
execute the next step symbolically on this sequence. Therefore, we compute a
new root sequence by applying the next axis on each element. This is done by
replacing the each remaining node types E with the axiom rg of productions
Rpg corresponding to the next axis. Then we enter recursion.

If we hit a node of type E in the actual selection process at runtime, we
can stop further searching if the symbolic execution of selection on the DTD
indicates future selection steps will fail. I.e., we simply check if the sequence Sg
generated by Rp is empty. This idea is exploited in the iterators defined in Algo-
rithms [7. They select the root node sequences for the ancestor and descendant
axes, respectively. Other axes iterators are computed analogously. Both algo-
rithms compute the sequence in an initialization phase and store it in an internal
container. Thereby they skip those element nodes n that can be excluded by the
observations above, i.e. elements with a type E = T'ype(n) where Sg = .

The finally iterator in Algorithm [7 computes a selection s, composed of
multiple steps and a given current node set. It proceeds step by step, starting
with the first step e. For each step, nodes n in the current set are checked for
conformance with e.sel. Also, nodes that failed the static execution, e.g., whose
Stype(n) = e, are eliminated. If there are no steps left, the current set is the
result of the selection and the algorithm terminates. Otherwise, each node is
replaced with the result of iterating over it according to the next axis. Then we
enter recursion.

182 Welf Lowe and Markus Noga

Algorithm 4 (Axis approximations)
preceedingSibling(element node type E) is
compute F = {F(em(...,E,...)) | “D =:=cm(...,E,...)” € DTD-rules}
forall fe F {
mark all states with outgoing E transition as E states;
delete all states not reaching an E state and their transitions;
set all F states final;
delete unreachable states and their transitions;
}
return G(JF)

followingSibling(element node type E) is

compute F = {F(em(...,E,...))| “Duz=cm(...,E,...)” € DTD-rules}

forall fe F {
mark all states with incoming E transition as FE states;
create a new starting state and add ¢ transitions to all E states;
delete unreachable states and their transitions;

}

return G(JF)

ancestorOrSelf(element node type E) is
nodeTypes := {E}
rules := {rg — ¢}
loop
forall X € nodeTypes {
add D to nodeTypes if "D :=cm(...,X,...)” € DTD-rules
add rp — X rx to rules
}
until nodeTypes stable;
return rules U {r — R rr} where R is the document root element type

descendantOrSelf (element node type E) is
nodeTypes := {E}
rules := {r - E rg}
loop
forall X € nodeTypes {
add rx — ¢ to rules if "X = EMPTY” € DTD-rules
add FEi,...,FE, to nodeTypes if "X ::=cm(F1,...,F,)” € DTD-rules
compute G(cm(E1,...,Ey,)) and rename its axiom rx
in the result, replace FE; by (F; 7g;)
add the result to rules
}
until nodeTypes stable;
return rules

Scenario-Based Connector Optimization 183

Algorithm 5 (Approximate Matches)
approximateMatches(element node type E, DID root node type R,
match expression m) is
class:= “must match”
e := last step of m
a := remainder of m
if (e.filter) class:= “may match”
if (e.sel # “x” Ne.sel # E) return “no match”
nodeTypes := approx(E,e.axis)
if (a empty) {
if (m absolut AR ¢ nodeTypes) class:= “no match”
return class;
}
for all E’ in nodeTypes {
class(E’) := approximateMatches(F’, R, a);
}
if (for all E’ in nodeTypes: class(E’)="no match”) return “no match”
if (for all E’ in nodeTypes: class(E’)="must match”) return class
return “may match”

Algorithm 6 (Approximate Selections)
typedef Rules = grammar rules for sequences of element node types;

// Input Rules define the sequence of relative root element node types
// Output Rules define the sequence of selected element node types

Rules approximateSelections(Rules R, selection path expression s,) is
e := first step of s,
m := remainder of s,
if (e.sel = A) replace occurrences of FE# A in R by ¢;
if (e.filter) replace occurrences of E in R by (Fle);
if (m empty) return R;
else {
replace occurrences of element node types E in R by a unique 7pg;
for all replaced element node types F {
Rg = approx(E, m.axis);
replace axiom of Rp by rg;
}

return approximateSelections(|JRgUR, m);

184 Welf Lowe and Markus Noga

Algorithm 7 (Iterators)
class ChildIterator extends Iterator is
Queue Node nodes := new Queue();
void init(Node n){
for cn in children(n) if (Spype(en) 7 €) nodes.enqueue(cn);
}

Node next(){if (nodes.empty) return null; else return nodes.dequeue();

class AncestorOrSelfIterator extends Iterator is
Stack [Node] nodes := new Stack();
void init(Node n){
while (n # R){
if (Srype(n) # €) nodes.push(n);
n := parent(n);

}

Node next(){if (nodes.empty) return null; else return nodes.pop();}

class DescendantOrSelfIterator extends Iterator is
Queue [Node] nodes := new Queue();
void init(Node n){
if (Srype(n) 7 €) nodes.enqueue(n) ;
for cn in children(n) init(cn);
}

Node next(){if (nodes.empty) return null; else return nodes.dequeue();}

class Selectionlterator is
Iterator [Node] nodes;
void init(Iterator a, SelectionPath s,){

nodes := new Iterator();
e := first step of s,
m := remainder of s,

while ((n := a.next()) != null)
if (conforms(n,e) A Srypen) 7€) nodes.add(n);
if (m empty) return;
else {
Iterator [Node] newNodes:= new Iterator();
for (m in nodes) {
generate iterator ¢ for axis of e and initialize over n
newNodes. concat (7) ;
}

init (newNodes, m);

}

Node next(){if (nodes.empty) return null; else return nodes.next();}

	1 Introduction
	2 Related Work
	2.1 Basic Technologies
	2.2 Connection and Adaptation
	2.3 Middleware Architecture and Generator Tools

	3 Symbolic Execution
	4 Lazy Evaluation
	5 Perspectives
	References
	A Appendix with Algorithms

