
An Infrastructure
for CORBA Component Replication�

Vania Marangozova and Daniel Hagimont

SARDES Project, INRIA Rhône-Alpes ZIRST,
655 av. de l’Europe, Montbonnot 38334 St Ismier cedex, France,

Vania.Marangozova@inria.fr,Daniel.Hagimont@inria.fr

Abstract. Traditionally applied to availability problems in various dis-
tributed computing domains (caching, fault-tolerance, disconnections),
replication solutions remain difficult to implement and challenging to
reuse. In this paper we propose a component-oriented approach in which
replication is treated as a part of the configuration/reconfiguration as-
pect of an application. The approach allows an easy reuse of replication
solutions and their integration through adaptation in existing distributed
component-based services. We apply the approach to an implementation
of the CORBA component model: OpenCCM.

1 Introduction

Traditionally applied to availability and performance problems in the areas of
fault tolerance, caching and disconnection management, replication gains con-
siderable importance with recent developments in global and mobile computing.
However, the emerging highly-dynamic environments ask for new replication so-
lutions. The problems of rapid and easy conception, reuse and adaptation of
existing replication solutions are more topical than ever.

Due to their lack of generality, current replication solutions do not respond
to the needs of reuse and adaptation. In fact, they apply to specific computing
domains (databases, web management, etc.) and depend strongly on the un-
derlying system architecture. As a result, even if identical replication principles
apply to different contexts, replication solutions’ reuse remains a real challenge.

Component-based architectures are a promising approach in the quest of a
generic replication environment. In fact, replication solutions’ domain-specificity
limitation can be dealt with using the component encapsulation principle. Fur-
thermore, the need of reuse and adaptation of replication solutions integrates
well in the logic of the fundamental software(component) reuse principle.

In this article we investigate on an adequate infrastructure support for repli-
cation integration in component-based systems. We describe a deployment/re-
configuration approach to replication and show the facility with which different
protocols can be attached to components without modifying their core business

� This research is partially funded by the RNTL project ARCAD.

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 222–232, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

An Infrastructure for CORBA Component Replication 223

code. Our work is based on the OpenCCM [11] platform: an implementation of
the CORBA Component Model (CCM) [12].

The article is organized as follows. Section 2 details replication issues in
component-based systems. Section 3 describes the used OpenCCM platform.
Our infrastructure for replication configuration, as well as its application to
two replication scenarios, is presented in Section 4. Sections 5, 6 and 7 discuss
respectively the lessons learned, related work and future perspectives.

2 Replication in Component Systems

Contrary to the object-based platforms centered on distributed application de-
velopment, the component paradigm considers the entire application life cycle.
Paying a particular attention to applications’ administration, the paradigm pro-
motes the separation between the components’ business logic implementations
and the system services they use. In component-based middleware like Enterprise
Java Beans [14], this principle is reified by container servers hosting component
instances and managing component-associated system services in a separate way.
Components are thus reused, without modifications of their business code, in the
context of different applications with different system management requirements.

A component-based replication infrastructure, aiming at component reuse in
different replication contexts as well as at replication solution reuse in different
application contexts, should provide adequate solutions to two major points.
The first point concerns the choice and the mechanisms for creating and placing
copies on different network nodes (replication) while the second considers the
relations established between these copies (consistency).

Replication configuration should be a main characteristic of a flexible
replication management solution. It should be possible to configure the set of
replicable entities (what), to define the most appropriate moment for replication
(when) and to control optimal copy placement (where). This is a rather ambi-
tious objective given that standard distributed systems use either no replication
(remote procedure calls) or fixed replication schemes with predefined and sys-
tematically used replicated entities. Java RMI [15] or the new CORBA3 standard
do allow the co-existence of replicable and remotely accessible objects but do not
allow the switch between the two without functional code modification. A non
intrusive replication management in a component-based system should prevent
functional modifications and allow for a future integration of the corresponding
treatments in a container. Replication will thus be naturally considered as a part
of the component’s configuration and administration.

Consistency configuration and adaptation is a major objective for a tar-
get infrastructure intended to allow reuse of components with different repli-
cation scenarios. This conclusion has emerged after a considerable research on
consistency showing the inexistence of a universal protocol [2], the insufficiency
of application specific solutions [3] and the encouraging results on consistency
adaptation [13]. Consistency should be therefore managed in the same way as

224 Vania Marangozova and Daniel Hagimont

replication: it should be part of the component’s configuration and administra-
tion.

Before describing the principles of our infrastructure for flexible component
replication, we present the platform used for our work: OpenCCM.

3 The OpenCCM Platform

In order to address deployment and administration issues in distributed applica-
tions’ life cycles, the CORBA standard proposes the CORBA Component Model
(CCM) [12]. The model defines a server side component framework integrating
component interface specification, component implementation, application de-
ployment and execution. Implemented at the University of Lille I, OpenCCM
[11] is an available open source, Java-based, CORBA-compliant, partial imple-
mentation of CCM.

3.1 OpenCCM Components

OpenCCM component types are explicitly declared in terms of components’ used
and provided interfaces (ports). Fig.1 gives the IDL declaration for an agenda
application in which users can connect to an agenda server and register, edit or
remove rendezvous from their plannings. The corresponding ManageReservations

interface is provided by the Server component and used by the Client component.
OpenCCM component instances, as well as their corresponding ports, are

represented by standard CORBA objects that we call respectively component
objects and port objects. A component object references the corresponding com-
ponent implementation and all component’s ports objects. This structure is the
basis of the OpenCCM introspection facilities. During deployment, introspection
is used to acquire port references and to establish component interconnections.
At runtime, introspection allows to explore these interconnections and to access
the corresponding port references needed for component method invocations.

 void addReservation(in Reservation res);
 void RemoveReservation(in string resId);
 listReservations getReservations();

component Client { //The client component

component Server { //The server component

 provides ManageReservations for_C;} //Provided interface

struct Reservation{...}; typedef sequence<Reservation> listReservations;

interface ManageReservations { //Business interface

 uses ManageReservations to_S;} //Used interface

 attribute name; //Configuration attribute

Fig. 1. A component description of a simple application

An Infrastructure for CORBA Component Replication 225

3.2 OpenCCM Containers

OpenCCM does not implement a separate container entity but integrates con-
tainer functions in component implementations using specialization of the com-
ponent generation process. The component inheritance tree is actually enriched
in order to include specific OpenCCM classes defining introspection and port
interconnection operations. The resulting component implements a standard
CORBA IDL interface (obtained through a mapping from the initial descrip-
tion) containing both the business interfaces and the additional introspection
and port management interfaces. In the case of the agenda example, the map-
ping produces the Client and Server interfaces shown in Fig.2.

The predefined CCMObject interface is responsible for providing all generic in-
trospection operations. The Client’s get connection to server and the Server’s
provide for clients methods are introspection operations returning the refer-
ences to the respective ManageReservations ports (corresponding to the used and
provided interfaces). A Client instance uses the obtained reference to invoke a
Server component. The other operations are used for connection management
and are discussed in the next section.

interface Client : CCMObject { ...Fig.1. business code //Component Client
 void connect_to_S(in ManageReservations cnctn); //Port management
 ManageReservations disconnect_to_S(); //Port management
 ManageReservations get_connection_to_S();} //Introspection

interface Server : CCMObject {...Fig.1. business code //Component Server
 ManageReservations provide_for_C(); } //Introspection

Fig. 2. Component-oriented standard IDL description of the agenda

3.3 OpenCCM Deployment

OpenCCM deployment is done by a deployment program which includes state-
ments for component archives installation, for component instance creation, for
component configuration and interconnection, and for application launching.
Component interconnection is done using the port management interface. In
the case of our agenda application, the Client’s port management interface con-
tains the connect to server and disconnect to server operations through which
the client is connected and disconnected to the server (Fig.2).

OpenCCM defines a basic deployment environment manipulated through a
simple API. The way it is used in a schematic deployment program for our agenda
application is given in Fig.3. The basic steps include the choice of the deployment
hosts (1), the installation of components’ implementations (2), the creation of
component instances (3), their configuration (4), the component interconnection
(5) and finally, the application launching (6).

226 Vania Marangozova and Daniel Hagimont

//(2) Install component archives

Server s = sh.create();
Client c1 = ch.create();

//(3) Create components

//inst is the cs1’s installation factory
inst.install("agenda","agenda.jar");

//sh/ch are components’ instance managers

//(1) Obtain the deployment servers
// ns is the CORBA’s NamingService
ComponnentServer cs1 = ns.resolve("CS1");

// s.name("Server");

//(5) Connect client and server

ManageReservations for_C=
// Get ports using introspection

 s.provide_for_C();

//(4) Configure components

c1.connect_to_S(for_C);
// Establish connection

//(6) Launching
s.configuration_complete();

Fig. 3. OpenCCM deployment of the agenda

4 Replication Management in OpenCCM

We discuss the design choices for an adaptable replication management infras-
tructure in the first part of this section. In the second part we describe our
experience in which we apply the proposed principles to two replication scenar-
ios for the agenda application.

4.1 Principle

Non intrusive replication management (cf. section 2) requires mechanisms con-
figuration of both the replication and consistency aspects.

We integrate replication configuration at the deployment level (Open-
CCM’s deployment programs). In fact, copy creation and placement spell well
in terms of application architecture configuration which is itself defined during
deployment. CCM deployment actually describes what and where components
are to be deployed, how these components are to be connected and is meant
(even if it is not the case yet) to specify architectural reconfigurations (when).
The replication aspect adds the specification of the set of replicable components
(what), the best copy placement (where), the consistency management (how) and
the most appropriate moment for replication (when).

We base consistency configuration on interception objects, consistency
links and component-specific state management. Interception objects allow to
integrate consistency management without modification of the components’ busi-
ness code. They intercept copy invocations and trigger consistency actions. The
latter take the form of pre and post treatments for the intercepted method calls
which continue to be delegated to the initial component implementations.

Consistency protocols define consistency relations between copies and provide
treatments to maintain these relations valid. Logically, these treatments require
the existence of copy interconnections to propagate consistency actions. We call
these connections consistency links.

Most consistency protocols access component internal data. In our proto-
type we preserve the component encapsulation principle but take advantage of
a component-specific state management by leaving the state access primitives

An Infrastructure for CORBA Component Replication 227

implementation to the component developer. Consistency protocols can thus use
these primitives and ignore component implementation details.

The concrete interception objects’ and consistency links’ implementations
depend on the specific consistency protocol chosen for a given application. The
next section describes the way these entities are generated in order to provide
replication-aware deployment in the OpenCCM platform.

4.2 Implementation

As discussed in the previous section, our component replication management
is based on interception objects used to catch component invocations and to
execute consistency treatments, on consistency links used to interconnect replicas
and on component accessor functions used to manipulate internal data.

An interception object in our prototype is a component object implement-
ing the same interfaces as the corresponding component but whose code contains
the consistency protocol implementation. The functional code of a component
is managed in a separate object and is referenced by the interception object for
invocation propagation. Notice that this design is equivalent to the interposition
object used to manage containers in the EJB component model.

The consistency link implementation requires that a consistency pro-
tocol expert (who is also responsible of the implementation of the consistency
actions) define the nature of the interfaces between the component copies. The
interfaces have to be IDL-described and are used to generate the final replicable
component.

As mentioned in the previous section, the component state manipula-
tion treatments are provided by a developer who is aware of the component’s
semantics. For Java components, we provide a default implementation based on
Java Serialization.

Generation of replication management code i.e. the definition of the consis-
tency link interfaces, the integration of the consistency protocol implementations
and finally the adaptations to the applications deployment programs is currently
done by hand. Tools for automation of the pretty systematic replicable compo-
nent generation process are under development.

In Fig.4, both the component to be replicated and the consistency protocol to
be applied are represented by their IDL definitions and their implementations.
The consistency protocol’s definition declares the consistency links interfaces
involved in the component copies’ coordination. The protocol implements these
interfaces as well as the component’s business interfaces in order to intercept the
corresponding invocations. The resulting replicable component implements the
interfaces and includes the implementations of both the initial component and
the chosen consistency protocol.

The procedure for integrating a replication scenario in a given component-
based application involves the following actions. First, a developer is to provide
the component business-logic implementations. If a component is to be
replicated, he will need to provide primitives for state capture and restoration.
In order to integrate a consistency protocol implementation, a replication

228 Vania Marangozova and Daniel Hagimont

implementation
Componnent’s

implementation
Consistency protocol’s

Componnent’s IDL3

Consistency protocol’s
IDL3

Replicable component

implements

implements

implements

implements includes

Fig. 4.

expert has to implement the corresponding protocol and to provide its IDL
interfaces. The generation of the replicable components is based on the
former actions: the component and consistency IDL definitions are merged and
associated with the corresponding implementations to generate the resulting
replicable component. Finally, the replicated architecture deployment may
take place. Components and their copies, as well as component interconnections
including the needed consistency links are explicitly created in the deployment
program.

4.3 Experience

We have applied the above infrastructure principle to two replication scenarios
for the agenda application. The first one implements a simple disconnection
scenario while the second implements a caching system.

Disconnection protocol. In the agenda’s disconnection scenario we keep the
same component business implementations (The IDL descriptions are those of
Fig.1 and Fig.3). We just make the Server component Serializable and ben-
efit from a default state management procedure including the two primitives
State captureState() and void restoreState(State state) granting access to
the component’s internal data (of type State).

The consistency protocol (Fig.5 shows the IDL definition) distinguishes be-
tween master and slave server copies (role attribute). A slave server is a discon-
nected copy of a master server. When a disconnection process is launched, the
slave server is created on the machine getting disconnected and initialized with

component Server { interface DiscPtcl {
 attribute Role role; void make_copy();
 provides DiscPtcl for_disc; void reconcile();
 uses DiscPtcl to_disc; } State get_state();
 void push_log(in Log log); }

Fig. 5.

An Infrastructure for CORBA Component Replication 229

public ServerImpl() {
 if (role.isMaster())

public void

 else log = new SimpleLog(); }
 realObj = new ServerActualImpl();

addReservation(Reservation res) {
 realObj.addReservation(res);
 if (role.isSlave()) log.put(res);}

public void reconcile() {
 to_disc.push_log(log)};

public State get_state() {
 return realObj.captureState();}

public void push_log(Log log) {
 realObj.restoreState(state);}

public void make_copy() {
 realObj = to_disc.get_state();}

Fig. 6.

//(5) Update connections

clnt.connect_to_S(for_C);

copy.connect_to_disc(for_disc);

clnt.disconnect_to_S();
for_C= copy.provide_for_C();

DiscPrtcl = srv.provide_for_disc();

//(4) Update copy before disconnection
copy.makeCopy();

//(6) RECONNECTION
copy.reconcile();
clnt.disconnect_to_S();
clnt.connect_to_S(srv.provide_for_C());

//(1) Create components
srv = SFactHost2.create();
srv.role("Master");
clnt = CFactHost1.create();

//(2) Connect client and server

//(3) DISCONNECTION

copy = SFactHost1.create();
//Create a copy

copy.role("Slave");

ManageReservations for_C =
srv.provide_for_C();
clnt.connect_to_S(for_C);

Fig. 7.

the state of the master. At reconnection, the possibly diverged slave and master
states are reconciled. Reconciliation is based on a simple redo protocol using a
log of disconnected operations.

The consistency protocol implementation is shown in Fig.6. The interception
object holds a reference to the component’s actual implementation and forwards
invocations e.g. addReservation. If the current component is a slave copy, the
interception treatment logs the operation for further reconciliation.

Fig.7 shows the deployment program for the disconnectable application ar-
chitecture. After creation of the server and client components (1), they are inter-
connected (2). Upon disconnection (3), a slave server copy is created. Its internal
state is synchronized (4) and the connections are updated (5) in order to con-
nect the client to the created copy. Upon reconnection (6), the two copies of the
agenda are reconciled and the client is reconnected to the master server.

Caching protocol. For the agenda’s caching scenario we have implemented a
version of the entry consistency protocol (multiple-readers/single-writer). In-
spired by the Javanaise system [6], the protocol associates a locking policy
(read/write) to each method of the agenda server and ensures the consistency
of cached copies before forwarding an invocation.

The sites where caching should be applied are specified in the deployment
program. A master site stores the persistent version of the server component
and a client may address either the remote master copy or a local replica. The

230 Vania Marangozova and Daniel Hagimont

interface Client2Server {
//consistency link client to server

 void augment_lock();}
 void State reduce_lock();
 State lock_write();
 State lock_read();

//consistency link server to client
interface Server2Client {

 void invalidate_reader();
 void State invalidate_writer();}

 State reduce_lock();

Fig. 8.

consistency links between replicas (Fig.8) use operations for fetching (in read or
write mode) an up-to-date component copy and for copy invalidation.

5 Lessons Learned

We have shown that it is possible to manage replication as an adaptable non
functional property in a component-based system. Furthermore, we have iden-
tified deployment configuration and component interface implementation as the
two conceptual places for non functional replication integration. Deployment is
used for replication scheme definition in applications’ architecture configuration.
Interface interception is used for consistency management and is to be part of an
adaptable container architecture (a major EJB as well as CCM research issue).

We believe that, in addition to the explicit deployment phase, introspec-
tion and port management are OpenCCM’s most interesting features for non
functional replication management. The explicit reference manipulation helps
reference integrity preservation upon reconfiguration. At the moment of writing,
EJB does not provide a similar functionality.

6 Related Work

Configurable replication is a major issue in works on distributed shared mem-
ory providing multiple consistency protocols [2] or in mobile databases projects
introducing optimistic consistency and application-specific reconciliation[5]. CORBA-
centered research is also very present with works on flexible caching. The CAS-
CADE [4] project for example is based on the CORBA interceptor mechanism
while Flex [10] uses object subclassing and object-personalized state capture.
The cited projects do certainly consider replication configuration and in some
solutions are rather close to the mechanisms used in our experiment. However,
they remain domain-specific while our work aims at overcoming this limitation
and reconciles issues coming from different domains.

Adaptation in general is a major objective in language platforms inter-
ested in easy source code modification [9], in frameworks considering middleware
architectures [1,7] and in operating system reconfiguration projects [8]. However,
the existing works do not address the most difficult issue in replication adapta-
tion: the analysis of the way replication can be defined as a separate aspect and
the appropriate application of adaptation mechanisms.

An Infrastructure for CORBA Component Replication 231

Adaptation in component-based middleware is a very recent issue and
existing adaptation efforts typically focus on non functional management of well
specified properties like transactions, security and persistence but not replica-
tion. The presented work is one of the rare efforts on replication adaptation.
In fact, most works treating replication in a component-based environment are
EJB-oriented and apply fixed replication solutions based on replication of the
underlying relational databases. In our knowledge, this is the first experiment
with (non-functional) replication adaptation in the CORBA component model.

7 Conclusion and Future Work

We have investigated the integration of replication management in a component-
based platform. We have proposed and implemented an infrastructure allowing
to configure replication aspects in a non functional way. We have successfully
integrated the proposed principles in the first Java-based implementation of
the CORBA component model, OpenCCM, by preserving its CORBA compli-
ancy. Our design is based on interception objects (to be comprised in the future
OpenCCM’s adaptable containers) and on deployment configuration extended
to include replication policy description. We have defined the procedures for us-
ing this infrastructure and have shown its application in two scenario cases: a
caching entry consistency system and a simple disconnection management.

An immediate perspective of this work is to provide the tools for automatic
generation of the replicable components. Even if we have described the pro-
cedure, most of the replication integration work is done manually and can be
automated. A tool for deployment program transformation (in order to integrate
a specified replication policy) could also be provided.

Another interesting perspective of this work is the investigation of the way
this infrastructure can be applied to other component models. Candidates are
notably Microsoft’s COM and EJB but also more abstract models like the stan-
dard ODP.

Finally, replication is only one system aspect and CCM one particular com-
ponent model. The work presented in this paper takes part in a broader project
aiming at the implementation of a generic and reflexive component-based mid-
dleware allowing encapsulation of different component types (EJB, CCM ...) and
adaptation for transparent integration of non-functional system aspects (persis-
tence, security, replication ...).

References

1. G. Blair, G. Coulson, P. Robin et M. Papathomas, An architecture for next gen-
eration middleware. In Proc. of Middleware’98. 191-206, Sept. 1998.

2. J.Carter. Design of the Munin Distributed Shared Memory System. Journal of
Parallel and Distributed Computing, 29(2):219-27, 1995.

3. P. Dechamboux, D. Hagimont, J. Mossiere, and X. R. de Pina. The Arias Dis-
tributed Shared Memory: an Overview. In 23rd Intl Winter School on Current
Trends in Theory and Practice of Informatics, LNCS 1175, 1996

232 Vania Marangozova and Daniel Hagimont

4. G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg. Implementing a Caching
Service for Distributed CORBA Objects. In Proc. of Middleware’00,1-23, April
2000.

5. A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and B. Welch. The
Bayou Architecture: Support for Data Sharing Among Mobile Users. In Proc. of
the IEEE Workshop on Mobile Computing Systems and Applications, 2-7, Dec.
1994.

6. D. Hagimont, F. Boyer. A Configurable RMI Mechanism for Sharing Distributed
Java Objects. IEEE Internet Computing, 5(1): 36-44, Jan.-Feb. 2001

7. R. Hayton, A. Herbert, et D. Donaldson. Flexinet: a flexible, component oriented
middleware System. SIGOPS’98, Portugal, Sept. 1998

8. J. Helander and A. Forin, MMLite: A Highly Componentized System Architecture.
Eight ACM SIGOPS European Workshop, Portugal, Sept. 1998.

9. G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. In J. L. Knudsen, editor, ECOOP 2001, Object-Oriented
Programming, LNCS 2072. Springer-Verlag, June 2001.

10. R. Kordale and M. Ahamad. Object caching in a CORBA compliant system.
USENIX Computing Systems, 9(4):377-404, Fall 1996.

11. R. Marvie, P. Merle, J-M. Geib, M. Vadet, OpenCCM : une plate-forme ouverte
pour composants CORBA, CFSE’2, France, April 2001.

12. Object Management Group. CORBA Components: Joint Revised Submission.
Aug. 1999. OMG TC Document ptc/01-10-26 (Components FTF interim report)

13. M. van Steen, P. Homburg, and A.S. Tanenbaum. Globe: A Wide-Area Distributed
System. IEEE Concurrency, Jan.-March, 1999

14. Sun Microsystems. Enterprise Java Beans Specification Version: 2.0. 2000.
15. Sun Microsystems. Java Remote Method Invocation Specification. 1998.

	1 Introduction
	2 Replication in Component Systems
	3 The OpenCCM Platform
	3.1 OpenCCM Components
	3.2 OpenCCM Containers
	3.3 OpenCCM Deployment

	4 Replication Management in OpenCCM
	4.1 Principle
	4.2 Implementation
	4.3 Experience

	5 Lessons Learned
	6 Related Work
	7 Conclusion and Future Work
	References

