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Abstract. Software architectural description languages (ADLs) are
used to specify a high-level, compositional view of a software application,
defining how a system is to be composed from coarse-grain components.
ADLs usually come equipped with a rigourous state-transition style se-
mantics, enabling formal understanding of distributed and event-based
systems [6]. However, additional expressive power is required for the de-
scription and understanding of enterprise-scale software architectures –
in particular, those built upon newer middleware, such as implemen-
tations of Java’s EJB specification [2] or Microsoft’s COM+/.NET [8].
Such middleware provides additional functionality to a configuration of
components, by means of a context-based interception model [12]. We
explore an ADL that can define architectures built upon such middle-
ware. In this paper, we focus on modelling transactional architectures
built on COM+ middleware.

1 Introduction

Over the past decade, middleware has undergone considerable evolution to meet
the needs of the enterprise. The enterprise requires software solutions which are
business-oriented, mission-critical, maintainable, flexible and distributed. It is
now common to deliver such solutions by utilizing a component-based middle-
ware, such as Java’s EJB specification [2] or Microsoft’s COM+/.NET [8]. A key
feature of such middleware is the provision of infrastructure to support integra-
tion of cross-component functionality at the configuration level. For example,
the COM+ architect may specify security or transactional settings over groups
of interoperating components through Component Services. Such specification
results in the addition of pre-programmed functionality to components, enabling
the developer to focus on business-oriented design and programming.

In COM+, this kind of cross-component functionality is provided through
context-based model of call interception. Here, deployed components are con-
ceived as residing within a context that potentially intercepts and manipulates
each call that crosses the context boundary. The advantage of this approach is
that the middleware provides the ability for contexts to manage the interaction
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between components, without the need for the programmer to write manage-
ment code. In EJB implementations, a similar result is achieved through the
container-server model. The ubiquity of this kind of computation has resulted
in the need for the enterprise system architect to design systems that involve
both components and contexts. In this paper, we outline an approach to mod-
elling architectures that use contexts. Here, we consider software architecture to
be a compositional view of how coarse-grain system elements (such as COM+
components and contexts) are assembled to form a piece of software. We extend
architectural description language (ADL) approaches to meet our goal [6,5].

We focus on transactional contexts. These contexts add transactional func-
tionality to components, without the need for the programmer to write trans-
actional code. Transactional contexts make the job of the programmer easier,
eliminating the need to write management code. However, without the use of a
formal architectural approach to contexts, the architect runs the risk of error.
Currently, many designers use an informal architectural style to define context-
component relationships in a system. Our work is novel, as it presents the first
formal architectural description language that includes such relationships in its
system descriptions. While our approach focuses on modelling COM+ transac-
tional contexts, a similar approach can be taken for EJB implementations.

Our approach is as follows. In Section 2, we define an architectural description
language (ADL) for middleware-based architectures in terms of components and
contexts. In Section 3, we give a semantics for our architectural descriptions,
modelling component and transactional context use via finite state machines.

2 Architectural Description

The TrustME ADL is fully described in [9]. Like other ADLs, it provides a means
of defining compositions of component-based systems [5,6]. In this paper, we
outline the subset of TrustME relevant to describing transactional contexts for
COM+ middleware-based architectures, the grammar of which is given in Fig. 1.

In modelling middleware-based systems, we decompose a system into hierar-
chies of contexts, each containing components, linked to each other by connec-
tions between their services:

– Components are self-contained, coarse-grain computational entities, poten-
tially hierarchically composed from other components. Our ADL’s compo-
nents are intended to directly represent COM+ components of an implemen-
tation.

– Services represent an abstraction of the type of messages that may be sent
between components. A service may be either provided or required by a
component.

– Contexts are used to model transactional contexts of COM+ (and can be
extended to model container/servers of EJB implmentations).

Components and services are analogous to components and interfaces in Darwin,
to components and ports respectively in C2 and ACME, or to processes and ports
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Grammar for component declarations, ComDec
component ComType {

(Comp : ComType)∗

(bind(Comp.Service, Comp.Service))∗

map(Comp.Service, Service)
provides : (Service)∗ requires : (Service)∗ }

Grammar for transactional context declarations, ContextDec
context ContextType {

((Context : ContextType)|(Comp : ComType))∗
bind(Context|Comp.Service, Context|Comp.Service)

Grammar for architectures
architecture {

(ComDec|ContextDec)∗
((Context : ContextType)|(Comp : ComType))∗
bind(Comp.Service, Comp.Service)∗

map(Context|Comp.Service, Service)∗ }

Fig. 1. The grammar for components, contexts and architectures. ComType,
ContextType and Service range over a sets of names.

in MetaH [5,6]. However, our ADL differs from these other languages, in that it
enables representation of transactional contexts as first class entities. This for
modelling middleware-based systems.

Our ADL is a typed, class-based metamodel: contexts and component types
are defined via class declarations, and may be instantiated to be reused within
other contexts, components or architecture definitions. To instantiate a compo-
nent C of type T , we write C : T . We define the subcomponents of a component
or context C : T to consists of all components contained in the declaration of T ,
together with their subcomponents. We write subcomponentsC for this set. The
set of subcontexts subcontextC of a context C : T is similarly defined, consisting
of all contexts contained in the declaration of T , together with their subcontexts.

A service s of a component A may be referred to within a larger component,
context or an architecture by a C++/Java style qualification: A.s. Also, a pro-
vided service s of a component A that is defined within a context C may be
referred to, outside the context, by a further qualification C.A.s. This reflects
the fact that, in implementation, the provided services of a component within
a transactional context may be called by a component outside of the context.
Within a compound component, architecture or context, the required service of
a subcomponent may use the provided service of another component. This is de-
fined via a bind declaration. A compound component exposes provided services
which may delegate calls to provided services subcomponents. The same may be
said of required services. This is defined via a map declaration.
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Declare(HotelRes) ≡ component CHotelRes{provides : bookHotel,
SQL op, abort, commit}

Declare(FlightRes) ≡ component CFlightRes{provides : bookFlight,
abort, commit}

Declare(ResSystem) ≡ component CResSystem{
provides : processReservation
requires : makeBilling, makeReservation,
abort, commit}

Declare(ResTransfer) ≡ component CResTransfer{Declare(HotelRes),
Declare(FlightRes), HotelRes : CHotelRes,
F lightRes : CFlightRes
map(processReservation,HotelRes.bookHotel)
map(processReservation, F lightRes.bookF light)
provides : makeReservation,
abort, commit}

Declare(ResBill) ≡ component CResBill {provides : makeBilling,
abort, commit}

Fig. 2. Five COM+ components, specified as ADL component declarations. We ab-
breviate these declarations by Declare(CResSystem), Declare(CResTransfer) and
Declare(CResBill) in the rest of the paper.

Example 1. Our example architecture involves a simple hotel reservation sys-
tem, built from three COM+ components – ResSystem, ResTransfer, ResBill.
These components are instances of class types CResSystem, CResTransfer,
CResBill. The component ResTransfer uses subcomponents FlightRes (of
type CFlightRes) and HotelRes (of type CHotelRes). Upon recieving an event
notification from the first component that a hotel reservation is to be made by
a user, the second component performs B2B operations with the Hotel and the
airliner for which the reservation is made. Upon receiving the same type of event
notification, the third component performs billing operations against the user’s
credit card. When the event is sent out, ResTransfer and ResBill will execute
concurrently. However, we require transaction support over both these compo-
nents: if one fails, then calls to either component must be rolled back. This
will prevent a user being billed if the hotel they wish to book at is full, and
will prevent the hotel from accepting a guest if their credit is bad. We require
separate transaction support for calls to FlightRes and HotelRes from within
ResTransfer, to prevent a flight being reserved if the hotel is full. Fig. 2 defines
the components of our example in the syntax of TrustME.

2.1 Architectures

In implementation, the designer defines transactional contexts by assigning trans-
action settings to component deployments. We reflect this by considering trans-
actional contexts as first class entities in our ADL.
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There are five possible transaction settings in COM+ (there are similar set-
tings for EJB implementations). 1. Disabled. This setting means that a compo-
nent is not transactional, and therefore should not make calls to any managed
resources, or to componenents which managed resources. 2. Not supported. This
setting indicates that the component will not run within a transaction. If the
component is called from within a transaction’s activity, COM+ creates the
component in a context running outside of the current activity. 3. Supported.
This indicates that the component will run in a transaction, but does not re-
quire one. 4. Required. This indicates that the component requires a transaction
to run. If the component is not currently in a transaction, COM+ will start a
new transaction. 5. Requires new. This indicates that the component requires a
new transaction. If the component is called from within a transaction, COM+
will start a new transaction activity for this component. Use of this setting en-
sures that this component’s transaction is unaffected by the success or failure of
others.

A transactional COM+ architecture is implemented by assigning these set-
tings to a group of COM+ components. We model such implementations by
means of contexts.

Example 2. Our architecture will consist of all components contained within
the same transactional context, and with ResBill (and thus its subcomponents)
contained within a subcontext. Our architecture is depicted in Fig. 3. The re-
quired services of ResSystem, makeReservation and makeBilling, are bound
to the provided services makeReservation and makeBilling of ResTransfer
and ResBill respectively. This specifies that when ResSystem requests that
the reservation be made and billed, ResTransfer and and ResBill will respec-
tively handle these functions. To meet our transactional requirements, the three
COM+ components ResSystem, ResTransfer and ResBill have settings of re-
quired, supported and supported respectively. A transactional context intercepts
calls made to and from ResBill. This is represented by declaring a context type
CResBillContext and context instance ResBillContext that uses ResBill. The
the required services of other components are bound to the provided services of
ResBill inside this context.

architecture {
Declare(CResSystem), Declare(CResTransfer), Declare(CResBill)
context CResSystemContext {
ResSystem : CResSystem,ResTransfer : CResTransfer,ResBill : CResBill
bind(ResSystem.makeReservation,ResTransfer.makeReservation),
bind(ResSystem.makeBilling,ResBill.makeBilling) }
ResSysContext : CResSystem,ResTransfer : CResTransfer,ResBill : CResBill
bind(ResSystem.makeReservation,ResTransfer.makeReservation),
bind(ResSystem.makeBilling,ResBillContext.makeBilling) }

Fig. 3. An architecture in which the three components are in a transactional context,
with ResTransfer (and its subcomponents) in a separate, nested transaction.
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Note that non-transactional systems can still be defined, using components
and connections without contexts. The form of these architectures are similar
those that are definable in other ADLs, involving a collection of components,
together with binding connections between their provided and required services.

3 Semantics

The language of our ADL depicts the static structure of a system. To understand
the dynamic behaviour of a system, we define a semantics for the elements of
our language.

3.1 Semantics of Basic Components

We do not try to give a comprehensive description of a component’s sematics.
Since components themselves are able to perform arbitrary universal computa-
tions, a comprehensive description of their semantics also would require a model
of universal computational power. Unfortunately, universal models are hard to
analyse and many interesting properties are undecidable.

Hence, we restrict our semantics to describe the aspect of input-output be-
haviour. We model this aspect with finite-state machines (FSMs), for which
efficient algorithms exist for testing equivalence and inclusion and performing
liveness and safety analysis.

Definition 1 (Finite State Machine). A Deterministic Finite State Machine
(FSM) D is a tuple D = (E,A,Z, δ, F, z0). E is called event alphabet, A is the
event alphabet, Z denotes the set of states, F ⊆ Z is the set of accepting (final)
states. z0 ∈ Z is a designated start-state. δ : Z×E×A → Z is a total function.

We often denote the transition function as a set of transitions, where we write
each transition as a tuple (fromState, event, action, toState), meaning that
δ(fromState, event, action) = toState and that the action action is associated
with that state transition.

A basic component has a semantics given by a FSM, whose event-alphabet
consists of the component’s provided services and whose action-alphabet consists
out of the component’s required services. Our semantics assumes that every basic
component C : T has a so called component-FSM (CFSM) describing its input-
output behaviour.

Definition 2 (Component-FSM). For a given component C, the component-
FSM (CFSM) C-FSMC = (EC , AC , ZC , δC , FC , z0C

) is defined as follows:

– for each service m ∈ providesC ∪ internalC two distinct events mstart and
mend exist in the event alphabet EC . mstart denotes the call of service m,
mend its return.

– the action alphabet AC consists of the component’s required services.
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C-FSM ResSystem

makeReservation/-
processReservation_
start/-

makeBilling/-
processReservation_end/-

-/commit

-/abort

-/rollBack_ResBilling

-/rollBack_ResTransfer

-/abort

-/rollBack_ResTransfer

1

2

C-FSM ResSystem

makeReservation/-
processReservation_
start/-

makeBilling/-

processReservation_end/-

-/commit-/commit

-/abortprocessReservation_end/-

(a) (b)

Fig. 4. (a): C-FSM of the ResSystem component. (b): Transactional C-FSM of the
ResSystem component.

The C-FSM of a component provides a mapping from called provided ser-
vices to resulting call made to external components via required services. The
transition function δ for a component defines the possible changes to the the
state of the component that occur when it receives events through its provided
services, or when it sends events through its required services. Each transition
is annotated with either an event or an action.

Example 3. In Fig. 4(a) we present the C-FSM of the ResSystem compo-
nent.

3.2 Semantics of Compound Components
and Nontransactional Architectures

The semantics of a compound component is given by a C-FSM, which is derived
from the semantics of the compound component’s subcomponents. The idea is
to examine the bindings between provided and required services of the compo-
nents and provided and required services of subcomponents respectively. This
information can be used to define FSMs that model an entire sequence of actions
and events that result from calling provided services. We refer to these FSMs as
service FSMs. Then, we examine the mappings from the provided and required
services of C to provided and required services of subcomponents. We combine
this information with service FSMs to model the event and action sequences
that can result from calling the component’s provided services. This results in
the component’s C-FSM. See [11,10] for details.

An architecture that consists solely of hierarchically composed components
(without transactional contexts) has a semantics defined in a similar way to that
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C-FSMResSystemContext

makeReservation_
start/-

processReservation_
start/- bookHotel_start/-

processReservation_end/-

processReservation_end/-

-/commit

-/abort bookHotel_
end/-

bookHotel_
end/--/SQL_op

bookFlight_
start/-

makeBilling_start/-

makeReservation_
end/-

makeReservation_
end/-

-/SQL_op

-/commit

-/abortbookFlight_
end/-

bookFlight_
end/-

-/chargeCreditCard

makeBilling_end/-

makeBilling_end/--/commit

-/abort

-/commit

-/abort

-/commit

-/abort

Fig. 5. C-FSM of the nontransactional architecture obtained by removing transactional
contexts from Fig. 3.

of compound components. As an example one can consider Fig. 5, the C-FSM
for the architecture described in Fig. 3 with transactional contexts removed.

3.3 Architectures with Transactional Contexts

Transactional contexts change the way contained components interoperate. This
is mirrored through changes to the overall behavioural semantics for an architec-
ture. We model transactional contexts. Just as a middleware can add transac-
tional cross-component functionality, the presence of contexts in an architecture
adds additional behaviour to the semantics of contained components.

Definition 3. For a given FSM A = (EA, AA, ZA, δA, FA, z0A
) and component

C, the mapping Φ : ZA → P(subcomponentsC) assigns for each state s ∈ ZA a
set of components D ⊆ ZA, where d ∈ D is true if (and only if) on a path from
the start state z0A

to the state s a service p with ζ(p) = d has been called.

Definition 4 (Rollback-Automata). For a given set of states D ⊆ ZA, D =
{d1 · · · dn} of a given FSM A we define the rollback-automata as a FSM rA(D) =
(Er, Ar, Zr, δr, Fr, z0r

), where Zr:=l0 · · · ln, z0r :=l0, Fr:={ln} and δr(li−1, di):=
li, for i ∈ [1..n]

Algorithm 1 (Translation of CR-FSM into transactional CR-FSM)

Input: non-transactional CR-FSMA = (EA, AA, ZA, δA, FA, z0A)
Output: transactional CR-FSMB = (Etr(A), Atr(A), Ztr(A), δtr(A), Ftr(A), z0tr(A))

Build mapping Φ : Z → P(subcomponentsC);
〈e.g., by dataflow algorithms.〉
B=A.clone();
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for each set s ∈ dom(Φ) do
add rollback-automata rA(s) to B;
add transition (Φ−1(s), abort, z0r ) to B;
state f := l.l ∈ Fr ;
identify states z0A and f ;

〈do not make z0A a final state, unless it allready has been one.〉
od

C-FSMResSystemContext

makeReservation_
start/-

processReservation_
start/- bookHotel_start/-

processReservation_
end/-

-/commit

-/abort

bookHotel_
end/--/SQL_op

bookFlight_
start/-

makeBilling_start/-

makeReservation_
end/-

-/SQL_op

-/commit

-/abort
bookFlight_
end/-

-/chargeCreditCardmakeBilling_end/--/commit

-/commit

-/commit
-/abort

-/rollBack_HotelRes

-/rollBack_FlightRes

-/abort

-/rollBackFlightRes

-/rollBack_HotelRes

-/rollbackResBill

-/abort

(transactional)

Fig. 6. Transactional C-FSM for the architecture of Fig. 3.

Example 4. Applying this algorithm to the non-transactional C-FSM of
ResSystem results in the transactional C-FSM given in Fig. 4(b).

Nested transactional contexts can be treated by applying algorithm 1 to the
innermost transactional contexts, then recursively to outer contexts. Thus, the
C-FSM of the overall context has to be constructed. The sub-FSMs of the inner
transactional contexts can be identified by the start states of their services. The
part of the overall C-FSM which already has been processed as inner contexts,
must be marked and excluded from further processing of the outer contexts. In
the example of figure 4(b), the rollback-transition marked as 1 leads to the begin-
ning of the inner transactional context for the component ResTransfer because
its triggering abort-transition occurs within the inner transactional context. The
rollback-transition marked as 2 leads to the outer transactional context, since it
results from an abort transition of the outer transactional context.

In Fig. 6 we show the result of applying algorithm 1 on the C-FSM of the the
architecture of Fig. 3. Since some rollback automata are combined, we marked
the start states of rollback automata as shaded states.

4 Related Work and Conclusions

In this paper we examine extensions to ADLs that facilitate modelling of ar-
chitectures involving transactional contexts. Our main contributions are: 1. We
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define a simple ADL for textually defining industrial middleware architectures,
2. we provide a compositional finite state machine based semantics for com-
positional component architectures, 3. we extend this semantics to incorporate
architectures that involve transactional contexts.

Our basic approach to syntax and semantics is similar to that of other ADLs .
Some form of semantics is used to define models of basic components’ behaviour.
For example, Darwin [5] uses the π-calculus [7], Rapide [4] uses partially order
event sets and Wright [1] can use a form of CSP [3]. The language of the ADL
is used primarily to impose structure on over a system’s behavior, expressing
its composition from components. Semantically, the composition-forming con-
structs are associated with semantic functions, which describe how a composite
component’s behavioural semantics is formed from subcomponents’ behavioural
semantics.

However, to the best of our knowledge, no work has been done previously
on the syntax and semantics of architectures of middleware-based systems with
transactional contexts. The advantage of finite state machines when modelling
component-architectures is the availability of efficient checks for interoperability
and substitutability. However, further work needs to be done to adapt our ap-
proach to more expressive forms of semantics, such as the π-calculus. Also, here
we have only modelled transactional contexts: we are currently extending our
system to model other middleware contexts.
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