

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 82�96.
� Springer-Verlag Berlin Heidelberg 2002

A Component Framework for Dynamic
Reconfiguration of Distributed Systems

Xuejun Chen1,2 and Martin Simons2

1 University of Stuttgart, Faculty of Computer Science, IPVR,
D-70049 Stuttgart, Germany,

xnchen@rupert.informatik.uni-stuttgart.de
2 DaimlerChrysler AG, Telematics and E-Business Research, HPC T728,

D-70546 Stuttgart, Germany,
{xuejun.chen, martin.simons}@daimlerchrysler.com

Abstract. The growing popularity of wired and wireless Internet requires
distributed systems to be more flexible, adaptive and easily extendable.
Dynamic reconfiguration of distributed component-based systems is one
possible solution to meet these demands. However, current component
frameworks that support dynamic reconfiguration either place the burden of
preparing a component for reconfiguration completely on the component�s
developer or impose strong restrictions on the component model and the
communication mechanisms. We investigate a middle ground between these
two extremes and propose a component framework that supports a framework
guided reconfiguration and places minimal burden on the component�s
developer. This component framework offers mechanisms to analyze and treat
the interactions between the target component and other components during a
dynamic reconfiguration.

1 Introduction

Today, not only conventional computers, but also many electronic appliances, such as
PDAs, mobile phones, TV boxes, and telematics systems in vehicles are becoming
�internet-enabled�. With the growing popularity of wired and wireless Internet, the
use of dynamically reconfigurable distributed component-based systems is increasing.
The ability to dynamically reconfigure the applications enhances the flexibility and
adaptability of distributed systems.

In long running distributed systems, it is undesirable to fix the exact location of a
component, since its operating conditions may change. It is also difficult for such
systems to decide which application components should be available throughout the
whole lifecycle of the systems. In these cases, dynamic reconfiguration provides the
necessary flexibility: a component can be dynamically loaded into the system,
migrated from one location to another, and unloaded from the system at runtime. An
additional advantage is that a component can be updated dynamically. Therefore, a
dynamically reconfigurable distributed system can quickly adapt to changing
environmental conditions.

A Component Framework for Dynamic Reconfiguration of Distributed Systems 83

When we want to optimize the performance of a distributed system, we have to
consider the following factors: machine load, memory capability and network
bandwidth. In a dynamically reconfigurable distributed system, we have the
possibilities to optimize the performance, for example, we can migrate components
from an overloaded computer to an underloaded computer. In addition, if two
components communicate closely with each other, we can locate them in the same
computer, so that the communication costs in a network can be reduced. This point
makes sense particularly for wireless communication.

However, in building a dynamically reconfigurable component-based distributed
system, how to deal with interactions among components during a reconfiguration is a
challenge. The current component frameworks (e.g. CORBA Component Model [15],
Enterprise JavaBeans [20] and Distributed Component Object Model (DCOM) [9]) or
service frameworks such as OSGi [16] provide little support for dynamic
reconfiguration of distributed systems. If a dynamically reconfigurable distributed
system is built on these component frameworks, the burden of preparing a component
for reconfiguration is completely placed on the component�s developer.

When reconfiguring a component, for example, migrating a component from one
location to another, the consistency of the system has to be maintained. As a result,
before a component is migrated, ongoing interaction between the target component
and other components must be completed. After a successful migration of a
component, the references to the migrated component must be updated. Therefore, a
component framework should provide mechanisms that monitor the interactions
among the components and automatically update invalid references.

Most of the component frameworks that offer location transparency use remote
invocation mechanisms for the interactions among components, although the
components are in the same location. Such location transparency degrades the system
performance, because of the incurred serialization and deserialization overhead. Our
component framework realizes not only distribution transparency, but can also
dynamically switch invocations from remote to local and vice versa. Remote method
invocation is used only if two components are really in different locations. In this
way, the system performance can be improved. In the paper, we will present our
measurement results of method invocations in our component framework.

This article describes a novel component framework that efficiently supports
dynamic reconfiguration of distributed systems. The rest of the paper is organized as
follows: Section 2 surveys related work. Section 3 describes the challenges of
dynamic reconfiguration on component framework. Section 4 presents a component
model for dynamic reconfiguration. Section 5 describes a component framework that
meets the challenges of dynamic reconfiguration. The last section gives a summary of
the main points and discusses issues for future work.

2 Related Work

In this section we describe the related work in the areas of component models and
dynamic reconfiguration of distributed systems.

84 Xuejun Chen and Martin Simons

2.1 Current Component Models

Currently, three major component models are well-known in distributed systems: the
Component Object Model (COM) [9], Enterprise JavaBeans (EJB), and the CORBA
Component Model (CCM). COM is a component model provided by Microsoft for
designing components dynamically bound to each other with multiple interfaces.
Distributed Component Object Model (DCOM) is an application-level protocol that
enables location transparent communication among COM applications in distributed
systems.

EJB is a server-side component model for building distributed Java application
systems. Similar to EJB, the CCM is a component model for building and deploying
CORBA applications. It is developed to provide a distributed component model using
programming languages other than Java and at the same time achieve interoperability
with EJB components. In both EJB and CCM, components are executed in a
container. Containers themselves run on application servers, offering services such as
transactions, security, persistence and events. Each component provides a home
interface and a remote interface. The home interface is used by the container for
managing its life-cycle such as creation, migration and destruction, while the remote
interface is used for providing functionality of a component. Both EJB and CCM
allow system services to be implemented by the container provider rather than the
application developer.

However, all of the above mentioned component models do not support dynamic
reconfiguration of components, because these component models only provide the
infrastructure that forms the basic building blocks for component systems. The
internal design of components, particularly the aspect related to component
reconfiguration is not addressed by conventional component models.

Currently, a new component model called OSGi service platform is attracting the
attention of industries. The Open Services Gateway Initiative (OSGi) created open
specifications for the network delivery of managed services to local networks and
devices[16]. OSGi specification contains a specification for a service framework that
provides an execution environment for downloadable components, called bundles.
OSGi service platform claims that it allows a bundle to be dynamically updated.
However, this framework does not guarantee the consistency of a dynamic update,
because the ongoing interactions between the bundle to be updated and other bundles
are not treated during a reconfiguration.

2.2 Dynamic Reconfiguration of Distributed Systems

Dynamic reconfiguration has been discussed in the research area of distributed
systems. In Conic [8], Kramer and Magee defined that a node reaches a
reconfigurable state, if this node is quiescent. However, in Conic, during the
reconfiguration of a node, other nodes that require a service from the target node are
completely blocked, where some activities are blocked unnecessarily. In Conic and in
[23], the co-operation among components is realized by atomic transaction that
simplifies the treatment of interactions among components during a dynamic
reconfiguration. However, communication based on transaction has restrictions: since

A Component Framework for Dynamic Reconfiguration of Distributed Systems 85

not every system is transactional, a lot of applications need to take concurrency and
partial failure into consideration [10]. Other research projects in this field, for
example [2, 17], tried to minimize the system interruption during a reconfiguration of
a component, where a configuration manager deals with the interactions among
components. In such approaches, the centralized configuration manager is the
bottleneck for communication among components. The work [5, 6] introduced a
component configurator that carried out a dynamic reconfiguration at the application
level, consequence of which is that the programmers must implement the configurator
of each component.

3 Challenges of Dynamic Reconfiguration

As mentioned in the introduction, a component in a dynamically reconfigurable
component-based distributed system can be loaded into the system, migrated from
one location to another, and unloaded from the system at runtime. Moreover, a
component can be replaced during its execution. In this section, we discuss what
challenges must be met by a component framework for supporting a dynamic
reconfiguration.

The consistent state of a component has to be guaranteed during a dynamic
reconfiguration of the component. We define in this paper that a component is
consistent, if the integrity of interactions between the component and other
components is guaranteed. In other words, there are no pending interactions between
the target component and other components. Similar to the work [8], we define that a
component can be consistently reconfigured, only when the following conditions are
fulfilled:
• Its clients carry out no new invocation on it.
• The invocations of its clients on it have been completed.
• It carries out no new invocation on any other components.
• Its invocations on its server component have been answered.

When a component fulfills the above conditions, we say, the component reaches a
reconfigurable state. However, how to recognize when the target component reaches a
reconfigurable state is a challenge. To meet this challenge, the component framework
must offer mechanisms to analyze and treat the interactions among components
during a dynamic reconfiguration. Before a dynamic reconfiguration is carried out, at
first, we have to determine what interactions between the target component and other
components will be affected by the reconfiguration. Then, we must decide how we
deal with these interactions, so that the target component reaches the reconfigurable
state. Thus, we can carry out the reconfiguration safely.

If a consistent reconfiguration is guaranteed, there are still some optimization
challenges in dynamic reconfiguration that we must take into account. First, we must
try to minimize the interruption that accrues during the reconfiguration. Second, we
must try to minimize the system overhead of the dynamic reconfiguration capability.
Finally, the burden that component developers take for the dynamic reconfiguration
must also be minimal, because the developers should only concentrate on the
application logic.

86 Xuejun Chen and Martin Simons

In conclusion, a component framework must meet the following demands to
support a dynamic reconfiguration of component-based distributed systems:
(1) The framework must provide supports for analyzing and treating interactions

among components during a dynamic reconfiguration. The framework must
know between which two components an interaction takes place. If a component
is being reconfigured, the framework must at first block new invocations between
the target component and other components, but let the ongoing invocations
between the target component and other components complete, so that the target
component can reach its reconfigurable state. If the framework blocks only
necessary interactions, the system interruption is minimized. After the target
component has been reconfigured, the framework must be able to automatically
update the reference to the reconfigured component, and rebuild the blocked
interaction to the reconfigured component. In addition, it is desirable that the
framework can measure the invocation rate among components. The invocation
rate is an important factor to decide on a dynamic migration.

(2) The communication between components should be location transparent, and the
components that are in the same location should communicate locally with each
other. However, if a component is migrated, for example, from location A to
location B, the geometry structure of the distributed system is changed. The
components in location A must now communicate with the target component
remotely, while the components in location B can locally communicate with it. In
this case, the framework should automatically switch invocations from remote to
local and vice versa, in order to support the location transparency, and at the
same time, to improve the system performance.

In the next sections, we will describe our component model and framework that
efficiently support dynamic reconfiguration of distributed systems.

4 Component Model for Dynamic Reconfiguration

A component model specifies design rules and conventions that are imposed on
component developers. There is some terminological confusion in the literature
concerning component models and frameworks. We follow the CMU/SEI
terminologies [1] which state that component-based systems rely upon well-defined
standards and conventions (what is called a component model) and a support
infrastructure (what is called a component framework).

4.1 Component Structure

A software component is a unit of composition with specified interfaces [22]. In our
component model, a component consists of the following (see Figure 1):
• service interfaces
• service implementation
• control interfaces
• control implementation

A Component Framework for Dynamic Reconfiguration of Distributed Systems 87

Service

service interface

control interface

Ctrl

Fig. 1. Component structure

A component offers other components services through the service interfaces, so
that the components can cooperate with each other. Conventional interface
specification expresses functional properties that include services provided by a
component and the signatures of these services - the types of arguments to the
services and the manner in which results are returned from the services [1]. We call
this kind of interface service interface. The service interfaces can be divided into
provided interface and required interface. The provided interface is an interface that
enables the component to provide other components the implemented functionality.
The required interface describes the functionality that must be provided by other
components or by the system to the component.

The service implementation (�Service�) implements the services provided by the
component. The control implementation (�Ctrl�) of a component allows the
component framework to control and reconfigure the components at runtime through
the control interface, which defines the following methods: start(), stop(), update(),
extractState(), restoreState(),and destroy(). These methods must be implemented by
the programmers.

4.2 Intercomponent Dependencies

The current component models do not require explicit specification of dependencies
among components and also do not manage the dependencies. However, if
dependencies among components are not explicitly specified, it is difficult to build a
robust component-based system, especially for a dynamically reconfigurable system.
For example, without a dependence management, a new component probably cannot
work after its installation, or the other components perhaps can not function after the
installation of the component, because their requirements may not be fulfilled any
more.

At design-time of a component, it must be determined on which components,
which resources and which hardware this component depends. Such dependency is
defined as static dependency. At compose-time of a component, for example, loading
the component into a system, the component framework has to fulfill these static
dependencies.

At dynamic reconfiguration-time of a component, we must answer the following
questions: when a component is reconfigured, which other components are actually
affected? How must we deal with these components? The static dependencies of
components can not offer sufficient answers to the above questions, because a
component does not actually depend on the components described in its static
dependencies at an arbitrary point of time. For example, component A needs a service

88 Xuejun Chen and Martin Simons

offered by component B. Only when the component A calls a method of component B,
A is in fact dependent on B. Before A calls a method of B or after the method call is
terminated, component A does not really depend on component B. We define the kind
of runtime dependency that happens in an invocation between two components as
dynamic dependency. The current component models do not distinguish between
static and dynamic dependencies. In our component model, by the use of management
of the dynamic dependencies among components we can determine which
components are actually affected by a reconfiguration. This is a necessary condition
for achieving such a dynamic reconfiguration that leads only to a minimal disruption
of the system.

4.3 Intercomponent Interaction

Today�s component frameworks often use RPC or its object oriented variant RMI
(Remote Method Invocation) as communication mechanism. A client component
holds references to its server components. If a server component is migrated or
replaced, its reference that is held in its client components is not any longer valid. If
the client component uses the reference, an exception will be thrown. The client
components have to treat the exception, for example, updating the reference to the
server component and repeating the call. Such a task is arduous and error-prone for
the component developers. Preferably, the component framework can update an
invalid reference just in time and automatically. In addition, as mentioned in Section
3, during a dynamic reconfiguration the interactions between the target component
and other components must be monitored. For these purposes, we suggest a novel
approach in which a component does not communicate with a normal stub of its
server component, but with a virtual stub of the server component. A virtual stub is a
local object and always valid for the client component. It holds the real reference to
the server component, and updates this real reference immediately if the server
component is reconfigured.

The advantages of a virtual stub are listed as follows: (1) A virtual stub can be
manipulated by the component framework, for example, it can be dynamically loaded
into the framework, and the real stub held in a virtual stub can be easily updated. (2)
A virtual stub can automatically monitor the invocations between components. (3) A
virtual stub can be automatically generated by a compiler (similar to the Java RMIC)
from the provided interface of a server component.

A programmer can use a virtual stub like a normal Java RMI stub. The interface
implemented by the RMI stub is also implemented by the virtual stub. The following
example describes how a virtual stub v_stub is used in a program.

5 Component Framework for Dynamic Reconfiguration

In this section, we describe a novel component framework that supports dynamic
reconfiguration. The component framework is an implementation of system services
that supports and enforces the component model described in the last section.

A Component Framework for Dynamic Reconfiguration of Distributed Systems 89

Fig. 2. An example for using a virtual stub

5.1 Interaction Treatment During a Dynamic Reconfiguration

In this subsection we show how the proposed component framework analyzes and
treats the interactions among components during a dynamic reconfiguration. The
component framework provides a component runtime environment that is based on
the Java Virtual Machine and implements the following system services:
configuration management (CM), CM agents, and dependence management.

5.1.1 Configuration Management

A dynamically reconfigurable distributed system needs a CM that is responsible for
initiating and performing a dynamic reconfiguration and guaranteeing the system
integrity during the dynamic reconfiguration. Reasons for dynamic reconfiguration
are the following: addition of a component; removal of a component; migration of a
component; update of a component.

The CM is a core service in the distributed component-based system. The primary
task of a CM is to check whether a configuration is consistent. The auxiliary tasks
include version management and change management. These tasks are similar to
software configuration management of conventional software systems and we no
longer treat them in this paper. Instead, we emphasize the treatment of interactions
among components during a dynamic reconfiguration.

When the CM decides to reconfigure the system, it must cooperate with its agents,
in order to carry out the reconfiguration consistently. It informs the CM agents about
the reconfiguration, so that the CM agents can control the interactions between the
target component and other components, and let the target component reach its
reconfigurable state. How exactly CM agents do their jobs will be described in the
next subsection.

5.1.2 CM Agent

Residing in each component runtime environment, a CM agent is responsible for
managing the components located in the same runtime environment, for example,
loading a component into the runtime environment, starting, stopping, updating, and
removing it from the system. In addition, a CM agent provides services for the
managed components and guarantees the consistency of a dynamic reconfiguration in

90 Xuejun Chen and Martin Simons

cooperation with the CM. The CM agent implements a component loader that is an
extension of the Java class loader. After the CM agent has loaded a component into
the runtime environment, the CM agent registers the component and stores the
reference to the component, in order to manage the life-cycle of the component
through its control interface.

When a component looks up a server component, the virtual stub of the server
component is dynamically loaded by the CM agent into the runtime environment. The
CM agent stores the reference to the loaded virtual stubs. Thus, the CM agent can
control virtual stubs through the reference. Once a server component is able to be
reconfigured, the CM agent asks the server component�s virtual stubs to block any
new invocations initiated by its client components. After the reconfiguration, the CM
agent signals the virtual stubs to update the real reference to the server component and
to resume the blocked communication. These operations are transparent to the clients.

A B

Virtual Stub of B

RMI Stub of B

 invoke, if B is remote

invoke invoke

Java Naming
Service

componentContext.lookup(B)

CM agent
load, initialize,
control, update

Java RMI

1

2

3

4
5

(if required)
lookup(B) 2

4

if B is local

Fig. 3. Cooperation between CM agent and virtual stub

If a component is invoking a method on another component, we say, it is
dynamically depending on the callee. The dynamic dependencies are registered by the
virtual stubs. In order to provide support information for analyzing the dynamic
dependencies among components, the virtual stubs must be aware which component
uses it. A virtual stub is initialized by a CM agent as follows. First, a client
component looks up a server component by calling
componentContext.lookup(serverName), where serverName represents the server
component (see Figure 3). The componentContext is the interface to the framework�s
services. Next, the CM agent checks whether the server component is local. If the
server component is local, the reference to the server component is already stored by
the CM agent. If not, the CM agent asks for the address of the server component from
the CM and invokes the method java.rmi.Naming.lookup in order to get the remote
reference to the server component. The CM agent initializes the loaded virtual stub
with three arguments: clientName, serverName and the local or remote reference to
the server component, where clientName is given by the componentContext. Thus, the
virtual stub is aware between which two components an interaction takes place and
obtains a real reference to the server component. Finally, the virtual stub is returned to
the client component. Thus, the client component can invoke a method on the server
component through the virtual stub.

A Component Framework for Dynamic Reconfiguration of Distributed Systems 91

We have designed a super class called VirtualStub, from which all special virtual
stubs are derived. The super class VirtualStub provides an interface, through which
the CM agent can control the virtual stubs. This interface is presented as following:
• initialization(clientName, serverName, target_ref): This method initializes a

virtual stub. clientName and serverName have already been explained. target_ref
is the reference to the callee (if the callee is located in the same runtime
environment) or to the Java RMI stub of the callee. A method on the server
component is actually invoked only by target_ref. clientName and serverName
are used for analyzing the dynamic dependencies and controlling the interactions
between the client component and the server component during a dynamic
reconfiguration.

• updateTargetRef(newTargetRef): This method is used after the reconfiguration of
a server component, so that the real reference to the target component can be
updated.

• setLock(boolean): If the method setLock(true) is called, newly initiated
invocations by the client component on the server component are blocked. If the
method setLock(false) is called, the blocked invocations are resumed.

5.1.3 Managing Dynamic Dependencies among Components

As mentioned in Section 3, a component can be consistently reconfigured only if it is
in a reconfigurable state. Dependence management monitors interactions among
components, so that it determines when a target component reaches a reconfigurable
state. Interactions that are affected by a reconfiguration are separated into two classes:
newly initiated interactions and ongoing interactions. Before a dynamic
reconfiguration, newly initiated invocations between the target component and other
components are blocked by calling the method setLock(true) of the virtual stubs. After
a dynamic reconfiguration, blocked invocations are rebuilt. On the other hand,
ongoing interactions between the target component and other components must be
completed. In order to monitor, when these interactions are completed, we have
designed two methods in the super class VirtualStub. They are addDependency and
removeDependency:
• addDependency(clientName, serverName, serverMethod): When a virtual stub

invokes a method on the server component, the dynamic dependency between the
client component and the server method of the server component is registered in a
dependence list. The argument serverMethod is used to analyze the call paths by
a nested invocation. How this argument is used will be explained later.

• removeDependency(clientName, serverName, serverMethod): After a virtual stub
has finished the method invocation on the server component, the registration of
the dynamic dependency between the client and the server method is removed
from the dependency list.

The following simple method illustrates how a virtual stub supports dependence
management.

92 Xuejun Chen and Martin Simons

public String testMethod(String info){
 if (lock == true) componentContext.block();
 try{
 TestInterface ref = (TestInterface)targetRef;
 addDependency(clientName, serverName, ”testMethod”);
 String str;
 if (remote == true)
 str = (String)ref.testMethod(info);
 else
 str = (String)ref.testMethod(copy(info));
 removeDependency(clientName,serverName, ”testMethod”);
 invocationCounter++;
 if (remote == true) return str;
 else return copy(str);
 } catch (Exception e){
 e.printStackTrace();
 return null;
 }
}
Fig. 4. Managing active dependency in a method of a virtual stub

Before a reconfiguration, all CM agents periodically check the dependency list in
the related virtual stubs by calling the method getDependencyInfo(). If there is no
ongoing interaction, the dependency list is empty, otherwise the CM agents allow the
ongoing interactions to be completed. Thus, the four conditions in the definition of
reconfigurable state mentioned in Section 3 are fulfilled, that is to say, the target
component reaches its reconfigurable state.

However, it is not easy to decide which newly initiated invocations on the target
component must be blocked. If we block a newly initiated invocation that participates
in a nested invocation during a reconfiguration, this may lead to a deadlock (if there is
cycles in the nested invocation), since the target component maybe can not reach a
reconfigurable state forever. To solve this problem, internal call paths of a
component are used by analyzing call paths in the dependence management. An
internal call path describes a call path from an in-port to an out-port of a component.
In order to determine the entire call paths for an invocation on a server component,
the dependence management needs to know which method on the server component is
being invoked by the client component and which internal call paths of the server
component participate in this call path. That is the reason why the argument
serverMethod is used in the method addDependency. By analyzing the entire call
paths between the target component and other components, the CM can exactly
determine during a dynamic reconfiguration, which invocations can be blocked and
which must not. Due to space limitations, we do not describe this in detail.

By controlling invocations among components, the component framework can
measure proximity among the components. For this purpose, an invocation counter is
defined in the super class VirtualStub (see Figure 4). The counter registers the number
of the invocations between the client and the server component. This information is
useful for a decision of migration. If two components communicate frequently with
each other and they are located in different runtime environments, we can move one
of them to another. As a result, the communication costs can be reduced. However,
after a migration of a component, the interactions between the target component and
other components should be switched from remote to local or vice versa. The next
subsection discusses this demand.

A Component Framework for Dynamic Reconfiguration of Distributed Systems 93

5.2 Switching Invocations from Remote to Local and Vice Versa

The current middleware, for example, DCE [18], CORBA [14], and Java RMI [21],
use RPC or Remote Method Invocation to support location transparent
communication between components. Even though two components are located in the
same runtime environment, they communicate with each other by using remote
method invocation. For example, Java RMI does not distinguish whether two
components are located in the same Java Virtual Machine (JVM) or not. Therefore,
serialization is always carried out, although both components are in the same JVM. In
this subsection we show how our component framework meets the second demand of
dynamic reconfiguration with respect to switching invocations from remote to local
and vice versa. In the component framework, the remote method invocation is used
only if two components are located in different runtime environments.

Notice that the parameters and results of inter-component invocations are always
passed by value, in order to guarantee the semantic of regular Java RMI. If two
components that communicate with each other are located in the same location, the
parameters and results of invocations between both components are copied in the
virtual stubs before being used (see Figure 4).

Automatically Switching Local/Remote Invocations
In our component framework, each component is dynamically loaded into the runtime
environment by the CM agent. The CM agent retains the references of the loaded
components. When a client component looks up a server component, the CM agent
loads an appropriate virtual stub of the server component and returns it to the client
component. If the client and the server component reside in the same runtime
environment, the virtual stub is initialized by the CM agent in such a way, that this
virtual stub holds a local reference to the server component. Therefore, invocations
between both components are local. If the client and the server component reside in
different runtime environments, the virtual stub holds a Java RMI stub of the server
component, thus invocations between both components are remote.

For example, if component A is migrated from location L1 to location L2, the
location relationships between A and other components are altered. The components
in L1 are remote components for A now, and the components in L2 are now local
components for it. After migrating A, L1�s CM agent must invoke the method
updateTargetRef(remoteA) on A�s virtual stubs in L1, where remoteA is the remote
reference to A. The CM agent in L2 must invoke the method updateTargetRef(localA)
on A�s virtual stubs in L2, where localA is the local reference to A. Thus, the
invocations are automatically switched from local to remote and vice versa.

Measurement Results of the Local/Remote Invocations
To study the costs of method invocations, we conducted our experiments on two PCs:
one is an Intel Pentium III 500MHz Desktop running Windows NT 4.0 and uses
standard JDK 1.2 version of Java Virtual Machine; the other is an Intel Pentium III
700MHz Laptop running Windows 98 and uses standard JDK 1.2 version of Java
Virtual Machine. These two machines were connected through a 100-Mbit Ethernet.
To measure the time of one invocation, we performed 1000 invocations of a simple
method in a cycle and repeated 10 times. This simple method receives a string from

94 Xuejun Chen and Martin Simons

the caller and returns the same string to the caller. The measurements were carried out
on an isolated network, and the reported times are the averages of these 10
measurements. Table 1 summarizes the performance measurements and compares the
invocations in our component framework by the use of virtual stub to regular Java
RMI.

Table 1. Comparative costs for a simple method invocation

Runtime environment Middleware Time in ms
Java RMI 1.0114 The client and the server

are in the same runtime
environment on the
desktop.

Our component framework 0.0623

Java RMI 2.7913 The server runs on the
laptop, and the client runs
on the desktop. Our component framework 2.8356

When a client and a server component are located in the same runtime
environment, the invocation between both components in our component framework
is significantly faster than in Java RMI, in spite of the overhead resulting from
dependence management. By the use of Java RMI, even though both components are
located in the same runtime environment, serialization must be executed. The
computational costs of serialization, as shown in many papers [7, 11, 19], degrade the
performance of RMI severely. As a rule of thumb, RMI�s serialization takes at least
25% of the costs of a remote method invocation [12]. The costs of serialization rise
with growing object structures. By the use of our component framework, the
invocations between two components in the same runtime environment are actually
local invocations, so that the system performance is improved.

When a client and a server component are located in different runtime
environments, the remote invocations between both components in our component
framework are a little slower than in Java RMI, because there are overhead costs of
0.0443 ms for supporting dependence management.

6 Conclusions and Future Work

This paper has presented a component framework that meets the demands of dynamic
reconfiguration mentioned in Section 3. The component framework offers
dependence management that analyzes the dynamic dependencies among components,
and uses virtual stubs that not only realize location transparent invocations among
components, but also dynamically monitor and manipulate interactions among
components during a dynamic reconfiguration. In addition, the CM agent can
automatically update an invalid reference to a component after its reconfiguration. In
the component framework, not only a consistent reconfiguration is guaranteed, but
also the disruption of the system is minimized, because only the actually affected
interactions are blocked. Such a dynamic reconfiguration is carried out at the

A Component Framework for Dynamic Reconfiguration of Distributed Systems 95

framework level, therefore, the burden of the reconfiguration on the component
developers is minimal. Furthermore, the component framework can automatically
switch invocations among components from local to remote and vice versa after the
migration of a component. Remote invocation is used only if two components are
really in different locations. This approach improves the system performance
significantly.

At the present moment, our framework does not provide any support to guarantee
that a group of reconfiguration actions is carried out as an atomic transaction. In the
next step we will achieve this by using the Java transaction service. Furthermore, we
believe QoS is also an important aspect of system consistency. If an application
demands QoS, its QoS demands may not be guaranteed during a reconfiguration. For
example, an application has a demand on latency. During a dynamic reconfiguration,
it can happen that this demand is not fulfilled because of system interruption. In the
future work, we will investigate what kind of support the component framework can
provide to guarantee the QoS of the component-based system during a dynamic
reconfiguration.

Acknowledgments

The authors thank Viktor Friesen and Alexander Leonhardi for their comments on
earlier drafts of this paper. They also thank the anonymous reviewers for their helpful
comments. The first author gratefully acknowledges the support of DaimlerChrysler
AG.

Reference

1. Bachman, F. et al. Technical Concepts of Component-Based Software Engineering.
Technical Report CMU/SEI-2000-TR-008, May 2000.

2. Bidan, Ch., Issarny, V., Saridakis, T., and Zarras, A. A Dynamic Reconfiguration Service
for CORBA. In: Proceedings of the fourth International Conference on Configurable
Distributed Systems, pages 35-42, Maryland, 1998.

3. Holder, O., Ben-Shaul, I. and Gazit, H. Dynamic Layout of Distributed Applications in
FarGo. Proceedings of the 21st International Conference on Software Engineering
(ICSE'99), Los Angeles, CA, USA, pages 163-173, 1999.

4. Holder, O., Ben-Shaul, I. and Gazit, H. System Support for Dynamic Layout of
Distributed Applications. In: Proceedings of the 19th International Conference on
Distributed Computing Systems (ICDCS'99), Austin, TX, USA, pages 403-411, 1999.

5. Kon, F. Automatic Configuration of Component-based Distributed Systems. PhD Thesis,
University of Illinois at Urbana-Champaign, 2000.

6. Kon, F. and Campbell, R. Dependence Management in Component-Based Distributed
Systems. IEEE Concurrency, 8(1), pp. 26-36, January-March, 2000.

7. Kono, K. and Masuda, T. Efficient RMI: Dynamic Specialization of Object Serialization.
The 20th International Conference on Distributed Computing Systems, Taiwan, April,
2000.

8. Kramer, J. and Magee, J. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, SE-16, 11, pages 1293-1306,
1990.

96 Xuejun Chen and Martin Simons

9. Microsoft, COM, http://www.microsoft.com/com.
10. Milojicic, D. Middleware�s role, today and tomorrow. IEEE Concurrency, pages 70-80,

April-June 1999.
11. Muller, G., Marlet, R., Pu C., and Goel A. Fast, optimized Sun RPC using automatic

program specialization. In Proc. of IEEE 18th International Conference on Distributed
Computing Systems, pages 240-249, 1998.

12. Nester, Ch., Philippsen, M., and Haumacher, B. A More Efficient RMI for Java. ACM
Java�99, pp.152-159, San Francisco, USA, 1999.

13. ObjectSpace. Voyager, http:www.objectspace.com, 2000.
14. OMG. CORBA, Object Management Group, http://www.omg.org, 1997
15. OMG. CORBA Component Model, Object Management Group, http://www.omg.org,

2000.
16. OSGi: Open Services Gateway Initiative. http://www.osgi.org, 2001.
17. Oueichek, I. and Rousset de P., S. Dynamic Configuration Management in the Guide

Object-Oriented Distributed. In: Proceedings of the third International Conference on
Configurable Distributed Systems, pages 28-35, Maryland, 1996

18. Rosenberry, W., Kenney, D., and Fischer, G. Understanding DCE, O'Reilly&Associates,
Sebastopol, Calif., 1992.

19. Silva M., Atokinson M., and Black A. Semantics for parameter passing in a type-complete
persistent RPC. In Proc. IEEE 16th International Conference on Distributed Computing
Systems, pages 411-418, 1996.

20. Sun Microsystems. Enterprise JavaBeans, http://java.sun.com/products/ejb/index.html,
1999.

21. Sun Microsystems. Remote Method Invocation, http://java.sun.com/products/jdk/rmi/
index.html, 1999.

22. Szyperski, C. Component Software - Beyond Object-Oriented Programming. Addison-
Wesley / ACM Press, 1998.

23. Warren, I. and Sommerville, I. A Model for Dynamic Configuration which Preserves
Application Integrity. In: Proceedings of the third International Conference on
Configurable Distributed Systems, pages 28-35, Maryland, 1996.

	1 Introduction
	2 Related Work
	2.1 Current Component Models
	2.2 Dynamic Reconfiguration of Distributed Systems

	3 Challenges of Dynamic Reconfiguration
	4 Component Model for Dynamic Reconfiguration
	4.1 Component Structure
	4.2 Intercomponent Dependencies
	4.3 Intercomponent Interaction

	5 Component Framework for Dynamic Reconfiguration
	5.1 Interaction Treatment During a Dynamic Reconfiguration
	5.2 Switching Invocations from Remote to Local and Vice Versa

	6 Conclusions and Future Work
	Acknowledgments
	Reference

