Integrating the ConcernBASE Approach with SADL

Valentin Crettaz, Mohamed Mancona Kandé, Shane Sendall, Alfred Strohmeier

Swiss Federal Institute of Technology Lausanne (EPFL)
Software Engineering Laboratory
1015 Lausanne EPFL, Switzerland

email: {Valentin.Crettaz, Mohamed.Kande, Shane.Sendall, Alfred.Strohmeier}@epfl.ch

ABSTRACT We describe ConcernBASE, a UML-based approach that is an instanti-
ation of the IEEE’s Conceptual Framework (Std 1471) for describing software
architectures. We show how the approach supports advanced separation of con-
cerns in software architecture by allowing one to identify and define multiple
viewpoints, concern spaces and views of an architecture. Our work focuses on
integrating the ConcernBASE approach with the Structural Architecture Descrip-
tion Language (SADL) in order to make the verification capabilities of SADL
available to those who develop in UML. The result is a UML profile for structural
description of software architecture. The paper also presents a prototype tool that
supports this UML profile.

KEYWORDS Software Architecture, Unified Modeling Language, UML, Structural
Architecture Description, SADL, Advanced Separation of Concerns.

1 Introduction

The fact that numerous software systems are becoming increasingly complex, distrib-
uted, and deployed in heterogeneous environments leads us to think that modeling the
software architecture of a system is a very important part of the development life cycle.
But, software architecture modeling should not be seen as a separate activity that is
limited to a particular "phase" of the software life cycle, as one might deduce from the
limited scope of existing architecture description languages (ADLs) [7][8][9]. ADLs
have the advantage of being mathematically defined and deeply rooted in formal meth-
ods, but also the disadvantage of lacking the flexibility for modeling systems from var-
ious viewpoints. In addition, due to their formal nature they can be hard to understand
and to use [2].

Unlike ADLs, the Unified Modeling Language (UML) is a widely used general-pur-
pose language, which provides a large number of well-known techniques and concepts
for modeling various kinds of software artifacts from different perspectives. Unfortu-
nately, UML, in its current state, is not sufficient for an explicit software architecture
description [2][10][11]. To gain the benefit of software architecture description with
UML, the core UML needs to natively define some key ADL-concepts as first-class
modeling elements, such as connectors and styles.

In previous work, we proposed a UML-based approach to software architecture
descriptions, which focused on extending the UML by incorporating key abstractions
found in most existing ADLs into a profile [2].

This work has been integrated into a new approach called ConcernBASE!. Concern-
BASE is centered around the principle of multi-dimensional separation of concerns
(MDSOC). MDSOC is an advanced form of separation of concerns that allows one to
identify and simultaneously separate multiple kinds of software concerns, including

1. ConcernBASE stands for Concern-Based and Architecture-centered Soft-
ware Engineering

Page 1 of 15

principles for composition and decomposition of those concerns [6]. However, unlike
other approaches based on MDSOC [12], ConcernBASE uses the standard UML nota-
tion and addresses some fundamental limitations of UML for supporting software
architecture descriptions.

The Structural Architecture Description Language (SADL) [4] has been developed to
support the specification of structural aspects of complex software systems. Unlike
other ADLs, e.g. Wright [13], it also focuses on the refinement of high-level system
structures. In addition, SADL provides an assortment of tools that support both refine-
ment and verification of different structural aspects of complex software.

This paper discusses how to map ConcernBASE architectural descriptions, written in
UML, to SADL architectural descriptions, making available the verification capabili-
ties of SADL tools for ConcernBASE. In addition, we present a UML-based tool that
supports the ConcernBASE approach and its integration with SADL, and implements
the UML profile for structural architectural descriptions.

The paper is organized as follows: section 2 briefly presents the ConcernBASE
approach. Section 3 illustrates the application of the ConcernBASE approach on a
compiler example, which is based on the reference model for compiler construction.
Section 4 briefly presents the key concepts of SADL. Section 5 presents a method for
translating ConcernBASE models to SADL specifications. Section 6 gives a concise
overview of the tool that fully supports the ConcernBASE approach. Finally, section 7
summarizes the paper and discusses future work.

2 The ConcernBASE Approach

ConcernBASE is a software architecture approach that aims at providing support for
software (component) development and software (system) construction, by combining
the capabilities of both MDSOC and UML. It addresses techniques for developing
individual software components and particularly focuses on understanding, reasoning
and specifying mechanisms for gluing those components together.

ConcernBASE is a UML-based instantiation of the IEEE’s Recommended Practice for
Architectural Description (Std 1471) [1], that is augmented with support for advanced
separation of concerns [3]. Thus, it supports mechanisms to produce software architec-
ture descriptions in a flexible and incremental way, allowing one to identify, separate,
modularize and integrate different software artifacts based on various kinds of con-
cerns. According to the IEEE Std 1471, Concerns are those interests which pertain to
the system development, its operation or any other aspects that are critical or otherwise
important to one or more stakeholders. Concerns include system considerations such
as performance, reliability, security, distribution, and evolvability [1].

Throughout the approach, we take the premise that software architecture is multidi-
mensional. That is, when constructing complex software, an architect represents the
system in many different ways in order to be able to understand, communicate and rea-
son about its high-level properties, from different perspectives or viewpoints. Each
way of representing the system may be considered as a different view of the architec-
ture of the system, that takes into account multiple dimensions of concern (i.e., differ-
ent kinds of architectural concerns).

In the IEEE’s conceptual framework for architectural description (IEEE Std-147), a
viewpoint is a specification of the conventions for constructing and using a view. While
this is an important and precise definition that helps understand how to separate differ-
ent concerns, it does say how those concerns can be identified, encapsulated and repre-
sented in architectural views. In ConcernBASE, viewpoints are characterized by two
essential architectural abstractions that we refer to as concern space and projection.

Page 2 of 15

Concern space represents a conceptual repository that contains all relevant concerns
related to a particular viewpoint. It allows us to structure different concerns into differ-
ent categories (dimensions), to specify the relationships between these categories and
maintain changes in the concern structure. Thus, a concern space can be considered as
a “multi-dimensional model of system considerations” that pertains to a software
architect from a particular perspective. A projection defines the relationship between a
viewpoint, a concern space and a view. It is an architectural abstraction that specifies
how to transform a set of concerns (sub-concern space) into a specific representation
(view) relative to a particular perspective (viewpoint). Different projections along dif-
ferent dimensions of concern result in different views. A view of the software architec-
ture of a system is a partial architecture description of that system that may consist of
one or architectural models. Finally, the architecture description of the whole system
may be considered as a set of different architectural views.

Without the notion of concern space, the definition of a viewpoint language, as pro-
posed by the IEEE Std-1471, can be very difficult, since it becomes quickly unclear
what the viewpoint language should define. Once we have the notion of concern space,
one can use some UML extensions mechanisms to define a UML profile that repre-
sents the viewpoint language. In this case, the concrete syntax and semantics of the
concern space will be fixed by the UML profile.

To discuss the mapping between ConcernBASE and SADL, we briefly present a Con-
cernBASE structural viewpoint and SADL, then we describe the mapping between
them. Finally, we discuss some issues related the tool support.

2.1 Structural Viewpoint

The structural viewpoint is a particular ConcernBASE viewpoint that specifies the
rules for constructing and using some structural views of the architecture of system. In
addition, it defines a structural concern space, a UML Profile for structural architecture
description and specifies three kinds architectural projections: a static structure projec-
tion, a behavioral projection and a configuration projection. These projections allows
one to create three corresponding views, which together build the architecture descrip-
tion of the system.

2.2 Structural Concern Space

The structural concern space is the most abstract representation of all significant con-
cerns that are relative to the structural viewpoint. It focuses on what kind of architec-
tural components, connectors, constraints and styles are needed to understand and
reason about the system’s structure. The structural concern space abstracts from many
details of the system components and connectors and does not provide any information
on how the communication among the architectural components is implemented or on
the internal structure of those elements. A component represents a particular UML
subsystem. Its type is defined by the UML stereotype <<archComponent>> that inherits
properties of both a UML Class and a UML Package. In contrast, a connector repre-
sents a special kind of UML Collaboration, in which participant components are omit-
ted. Instead, they are represented by connection points (their interactions points belong
to the connector)[2].

2.3 Static View

The static view describes the static models of the components and connectors compos-
ing the system. Computational components represent subsystems, system-level reus-
able modules with well-defined interfaces, or plug-in capabilitiesl. A computational
component is a locus of definition of some computation and data concerns, which usu-

Page 3 of 15

ally do not crosscut the boundaries of a single subsystem or module. Some compo-
nents may have internal structures that can be represented at subsystem or lower levels
using a number of representation units. Thus, the representation units that compose a
specific component must pertain to those computation and data concerns, which are
modularized by the same component.

The UML Profile for SADL defined for ConcernBASE supports the specification of
computation components by using a class-like notation. To visually distinguish com-
putational components from other components, such as classes, the keyword <<compu-
tational>> or the computational icon (placed in the upper right hand corner of the class
name compartment) are used. LexicalAnalyzer, shown in figure 3 is an example of a
computational component.

The interface of a component is specified as a collection of several interface element
types, each of which defines a logical interaction point between the component and its
environment. The interface elements of a component can be of three different types:
operational, signal or stream. An <<operational>> interface element type of a component
describes a set of operations that can be required by or provided to other components,
whereas a <<signal>> interface element type specifies a set of signals that can be sent to
or received from other components. A <<stream>> interface element type enumerates a
collection of streams that can be consumed by or produced to other components, as
well as a set of quality of services to be guaranteed by those streams. There is a com-
position association between a component type and its interface element types.

A connector is a locus of modularization for component interconnections and commu-
nication protocols. Basically, the static structure of a connector consists of connection
points and a connection role. A connection point describes a point at which a compo-
nent can join a connector to communicate with other components. Thus, it represents
an element of the connector interface through which the participation of a component
in an interconnection can be defined. A connection role is an abstract representation of
the channel between compatible connection points. It also specifies the protocol of
interactions between connection points.

2.4 Behavioral View

The behavioral view describes the dynamic (or behavioral) properties of all architec-
turally significant elements of the system under development. The behavior of a com-
putational component is specified by the component interface protocol (CIP). A CIP
defines the temporal ordering of data flows, call events, and signal events that can be
received or sent by the component. It is defined by composing the protocol statema-
chines of all interface elements. Composition is defined by "anding" all statemachines
of the interface, i.e. the statemachine of each interface element runs concurrently to all
the others.

The behavior of a connector type is defined by specifying the protocol of interactions
for each connection role and the behavior associated to the connection points. Both of
these are described using UML protocol statemachines.

2.5 Configuration View

The configuration view describes the organization of the system in terms of component
and connector type instances. An instance of a connector type has two categories of
elements: dynamic ports and links between these ports. The dynamic ports are instanti-

1. As described later, dynamically attaching and detaching connection points to components, as
defined in system configurations, enable our component model to describe plug-in capabilities.

Page 4 of 15

ations of connection points, whereas the links are instantiations of connection roles.
Similarly, when a component type is instantiated, its interface element types are instan-
tiated as static ports that are parts of the boundary of the component instance. Two or
more component instances can be then interconnected to define a configuration of the
system by attaching dynamic ports of the connector instance(s) to the component
instances. Before a dynamic port is attached to a component, we have to check that its
contract is fulfilled.

3 Compiler Example

This section presents an example that illustrates the benefits of the ConcernBASE
approach by applying its techniques to a well known compiler example. Figure 1
depicts an informal representation of a Level-3 Compiler architecture taken from [4],
which uses the reference model for compiler construction.

Despite the box-and-arrow architecture representation, figure 1 shows that the com-
piler has a batch-sequential architectural style. The main component coordinates the
correct execution sequence of the components composing the compiler system. First, it
transfers the control to the LexicalAnalyzer, then to the Parser, then to the AnalyzerOpti-
mizer, and finally, to the CodeGenerator. The rounded-edge components, SymbolTable and
Tree, are shared-memory components. The former holds binding information and
makes them available to the LexicalAnalyzer and AnalyzerOptimizer. The latter keeps
abstract syntax trees and is accessed by the Parser, AnalyzerOptimizer and CodeGenerator.
Note that some components have read and write access, while others are only granted
read or write access. The Parser component is directly receiving tokens from the Lexi-
calAnalyzer via the unidirectional pipe relating them and not through shared-memory
components.

v \ — A 4

toks [
LexicalAnaIyzer*:’jT\) Parser CodeGenerator+ J ‘ AnalyzerOptimizer
code

read(binding) y write(binding)

SymbolTable write(ast)

read(ast)

read(binding)
— Pipe Connector
—» Control transfer Connections @ Output port (] Data Structure Component

-~ Call connections /Ordering constraints ~ (_} Input port [Functional Component
Fig. 1. Compiler Architecture: taken from [3]

Figure 2 depicts the set of significant concerns that define the structural concern space
of the compiler system. It contains six components: LexicalAnalyzer, Parser, AnalyzerOpti-
mizer, CodeGenerator, SymbolTable and Tree, which are connected together by a complex
connector, named CompilerConnector. As shown below, the connector plays a central
role in this example. It mediates different kinds of communications between the com-
ponents of the system and encapsulates all the communication paths. The CompilerCon-
nector also coordinates the interactions among participant components. Therefore, it
may enforce a particular communication protocol among the components.

Figure 3 illustrates the static structure of the LexicalAnalyzer component. Its component
interface is composed of five interface elements, where each element defines a logical
interaction point between the component and its environment. The ExecutionControl
interface element provides the operation start with the meaning that another component
can activate the LexicalAnalyzer, i.e. starts it by implementing this interface. The Memory-
AccessControl interface element requires two operations: read and write. This means that

Page 5 of 15

<archComponent=] ~<archComponents>>]

Par=zer AnalyzerOptimizer

~<archComponent> (-] \\ // <ZarchComponent s]

Lexicalanalyzer ~ - CodeGenerator
_ s d

- . - -

—-
S
~ErannectorsE o

e

ilerconnector

.,
4 ~
I .
I Y
-~ ~
==archComponents:- (] =-=archComponentsi-]
SymbalTable Tree

Fig. 2. Structural Concern Space Model of the Compiler System
the LexicalAnalyzer requires these operations to be provided by another component. The
ControlFlowSignaling interface element declares incoming and outgoing signals neces-
sary to control the execution of the LexicalAnalyzer, while the MemoryFlowSignaling inter-
face element enumerates signals needed for the communication with the shared-
memory components.

<<operational=> [<<computational>>] <<streamz> [%]
ExecutionControl Lexicaldnakyzer Dataflow
Provide s Operational QoS
start(String dev) %’_‘_‘ +ilex Mem Crl:MemoryAccessCantrol no token lost
Require s +/lex Ctrl:Ex ecutionControl no character lost
Signal Str no binding lost
+lex CtrlSig: ControlFlowSignaling Produce s
+ilexMemSig:MemoryFlowSignaling tokens:StreamToken
Stream binds:5treamBinding
+/lexstr:Dataflow Consumes
chars:5tream Character
: i binds:5treamBindin
+ilex MesfCerl +Hlexdrisia Hexemsia 2
<=signal=>]
- ti I i
operation al %) <=signal=>] MemoryFlowsignaling
MemoryAccessControl ControlFlowSignaling -
Frovid - Outgoing
rovide s
0utgmr.|g writeRequestiString dev, String mem)
Require s startAccepted(String dew) readRequestiString dev, String mem)
readistring mem,Stream kind) Incoming Incoming
writelitring mem, Stream kind) startRequestediString dew) writeAcceptedi{String dew)
readiccepted(String dew)

Fig. 3. Static Structure of the Lexical Analyzer

Lastly, the Dataflow interface element defines two streams produced by the LexicalAna-
lyzer, namely a stream of tokens and a stream of bindings, as well as two consumed
streams conveying characters and bindings. It is important to remark that bindings are
both produced and consumed by the component, showing the similarity with figure 2,
where the LexicalAnalyzer component reads and writes bindings, i.e. produces and con-
sumes them. As shown below, all these interface elements are involved in a composi-
tion relationship with the component that realizes them. Furthermore, the interface
elements are externally visible parts of the component.

The use of communication-specific interface elements clearly exhibits separation of
concerns when defining specialized interaction points (referred to as static ports in the
configuration view), since each interface element type is responsible for a particular
communication type.

To illustrate a portion of the configuration view of the compiler system, we instantiate
the LexicalAnalyzer and Parser components and the simple connectors. The resulting
configuration is shown in figure 4, which depicts a part of the configuration view of the
compiler system. In figure 4, we can see one instance of the LexicalAnalyzer component

Page 6 of 15

and one instance of the Parser component. Each interface element owned by the com-
ponent is shown as a static port on its boundary. We distinguish three connectors
instances, which are used to mediate the communication between components. One
connector links the <<operational>> static ports of ExecutionControl together, another
relates the <<stream>> Dataflow ports, and another the <<signal>> ControlFlowSignaling
ports.

:MemoryAccesControl

:MemoryAccesControl -ExecutionControl ExecutionControl~

<< computational >>
/p: Parser

<< computational >>

Nla:LexicalAnalyzer

:ControlFlowSignaling -ControlFlowSignaling~

:MemoryFlowSignaling :MemoryFlowSignaling

Fig. 4. Configuration View of the Compiler System

4 Overview of SADL

This section gives a brief introduction to the concepts of SADL. Figure 5 shows a por-
tion of the architecture description of the compiler_L1 example in SADL. The top-most
section of an SADL architectural description is called ARCHITECTURE; it encloses
other lower-level SADL section. We can see that an architecture section is referenced
by the identifier compiler_L1. The architecture description given after the ARCHITEC-
TURE keyword includes exchanged data with its environment using input and output
ports. The compiler_L1 has an input port, named char_iport, and an output port, called
code_oport. char_iport receives a sequence of characters (SEQ(character)), and code_oport
sends code data. To use SADL to definitions that are externally defined, an architecture
description must first import them. This is achieved by the using the keyword IMPORT-
ING, indicating where the definitions can be found. In our example, IMPORTING Function
FROM Functional_Style tells us that Function is imported from an SADL style named
Functional_Style. In order to be imported into an SADL architecture, an SADL defini-
tion has to be exported using the EXPORTING statement. For instance, the declaration
EXPORTING start specifies that the start function is made available to other architectures
wanting to utilize that function.

An SADL architecture description contains three different sections dealing with vari-
ous aspects of its software architecture, namely COMPONENTS, CONNECTORS and
CONFIGURATION. The first and the second sections contain the declaration of the com-
ponents and connectors, respectively, whereas the third section defines constraints on
the configuration of the architectural elements defined in the first and second sections.

The COMPONENTS section contains mainly elements like ARCHITECTURE, Function,
Variable and Operation. In SADL, all of those elements are considered as being compo-
nents. The ARCHITECTURE section allows us to define sub-architectures that can be
contained in a higher-level architecture. For instance, in figure 5, lexicalAnalyzerModule
is a sub-architecture contained in the compiler_L1 architecture. Note that through this
feature, SADL provides a support for modularization.

Functionality of architectures can be expressed through the definition of Function com-
ponents. As an architecture element, a Function component may have input and output
ports through which data can be received or sent. In figure 5, the sub-architecture lexi-
calAnalyzerModule contains a function called lexicalAnalyzer representing the main func-
tionality of the sub-architecture.

Operation and Function components have similar meanings. The difference between
them lies in the fact that the input ports of an Operation are seen as the parameters and

Page 7 of 15

IMPORTING Function FROM Functional_ Style

compiler Ll : ARCHITECTURE [chars_iport : Finite_Stream(Character) -> code_oport : Finite Stream(code)]
BEGIN
COMPONENTS
lexicalAnalyzerModule : ARCHITECTURE
[chars_iport : Finite_ Stream(Token), bind_iport: Finite_Stream(Binding) ->
bind oport: Finite_Stream(Binding), token oport : Finite_Stream(Token)]
BEGIN
COMPONENTS
lexicalAnalyzer : Function
[chars_iport : Finite_ Stream(Token), bind_iport: Finite Stream(Binding) ->
bind_oport: Finite_Stream(Binding), token_oport : Finite_Stream(Token)]
characterVariable : Variable (Character)
tokenvVariable : Variable (Token)
bindingVariable : Variable (Binding)
CONNECTORS

CONFIGURATION
token_read : CONSTRAINT = Reads (lexicalAnalyzer, tokenVariable)
token_write : CONSTRAINT = Writes(lexicalAnalyzer, tokenVariable)

END

CONNECTORS

tokenPipe : Pipe[Finite_Stream(Token)]

CONFIGURATION

tokenFlow : CONNECTION = Connects (tokenPipe,lexicalAnalyzerModule!token oport,parserModule!token_iport)

[END

Fig. 5. Extract of the Level-3 Compiler SADL Specification
the output port as the return value of the operation. However, the number of output
ports of an Operation component is limited to one.

Variable components are used to hold different types of data and make them available to
other components in the sense of shared-memory, which is local to a sub-architecture.
One component is only able to keep a single type of data, which means that we need
different Variable components for different types of data. For instance, the lexicalAnalyz-
erModule contains three different Variable components (character-, token- and bindingVari-
able), the only three that are used by the sub-architecture.

The CONNECTORS section contains the definitions of connectors, these are, e.g., kind
Pipe and Enabling_Signal. Connectors enable communication among components. A Pipe
connector carries data from an output port of one component to an input port of
another. The transmitted data must be of the same type supported by the related output
and input ports. An Enabling_Signal connector mediates signal communication that is
likely to occur between two components.

The CONFIGURATION section defines the configuration constraints on the previously
defined components and connectors. These constraints may state, for instance, which
Function or Operation component has read/write access to a Variable component, which
component sends a signal, which component receives it, the direction of the data flow
between two components, and from which component an Operation is called. We use
two different types of statements, namely CONNECTION and CONSTRAINT. The former
defines data flow connections and the latter specifies all other kinds of constraints.

Page 8 of 15

5 Mapping ConcernBASE to SADL

This section presents our approach for translating a ConcernBASE architectural
description written in UML into a textual form written in SADL.

The mapping consists of 5 steps. The first step identifies all data types utilized in the
ConcernBASE architectural description and map them to SADL. The second step
requires that all the architectural components be found and mapped to SADL. The
third step requires that all the interface elements of each architectural component be
found and mapped to SADL. The fourth step identifies data flow connections and
maps them to SADL. And finally, the fifth step puts the pieces together.

5.1 Mapping Data Types

To perform this task, we use an SADL feature that allows SADL styles to be defined
anytime [4]. Figure 6 shows an SADL style which defines the data types used in the
level-3 compiler (see section 4).

Basically, we define a new style that consists of all data types contained in the current
architectural description. To do this, we have to look at every stream interface in the
static view of all the components and connectors. Then, we build up the data types list
by gathering every data type supported by the different streams. Then, we simply
define a new style having the name of the current architecture appended with the suffix
Types in a file having the name of the style with the extension ".sadl".

AnalyzerOptimizer

<<streamzx [§]

LexicalAnalyzer ~ Parser

<<streamr> [§] <<streamz> [§]

Dataflow

Dataflow

Dataflow

005
no token lost
na character last
no binding lost

Qo5
no asts lost
na tokens lost

Qos
no ast lost
no binding lost

Produce s

Produce s
Produce 5 asts Streamast asts:StreamAst EXPORT ALL
tokens:StreamToken :
e Consumes Consumes Compiler Types STYLE
c . tokens:StreamToken binds:5treamBinding BEGIN
asts:StreamAst
chars:StreamCharacter Token : TYPE
binds:StreamBinding Character : TYPE
Binding TYPE
Ast : TYPE
CodeGenerator ~ SymbolTable ~ Tree Code : TYPE
<streamzx 8] <<streamzx 8] <<streamx [] END

Dataflow

Dataflow

Dataflow

QoS
no code lost
na ast last

Produce s

codes:Stream Code

Consume s

asts:StreamAst

Qo8

no bind lost

Qo8

no ast lost

Produce s
binds:StreamBinding

Produce s
astz:StreamAst

Consumes

binds:StreamBinding

Consumes

asts: StreamAst

Fig. 6. Compiler_Types.sadl

5.2 Mapping Architectural Components

Before mapping ConcernBASE components to SADL, we have to look at the structural
concern space and identify the architectural components that are contained in the sys-
tem. It is possible that other UML artifacts (for instance, high-level connectors) might
have to be modeled as components. Such artifacts will be discovered during the next
steps.

We translate every architectural component (subsystems) as an SADL sub-architecture
with the suffix Module and declare them in the COMPONENTS section of the main archi-
tecture. We then declare a Function component with the same name as the component

Page 9 of 15

COMPONENTS
lexicalAnalyzerModule : ARCHITECTURI

<=archComponents:> B

LexicalAnalyzer [coo T2 coo]
‘ e BEGIN
i 0 z COMPONENTS
| Y lexicalAnalyzer : Function
‘ @3 [... > ...1
[‘A?‘cﬁﬂct_o;;‘; END
parserModule : ARCHITECTURE
| [... > ... 1]
BEGIN
; COMPONENTS
<<archComponents>x> ﬁ \
Parser parser : Function
[... > ... 1]
END
CONNECTORS

Fig. 7. Translating Architectural Components

and the same input and output ports. The Function represents the main functionality of
the sub-architecture and will be referred to as the sub-architecture’s main component.
Figure 7 shows how the structural concern space is translated to SADL.

5.3 Mapping Component Interfaces

To translate the component interface, we have to look at its static view. The component
interface is composed of three different interface element types, each of which sup-
ports a different communication pattern.

5.3.1 Stream Interface Type

Clearly, the <<stream>> interface element type is the easiest type to map, since it is
equivalent to a SADL port. A stream interface element may produce and consume dif-
ferent kinds of streams, e.g., video and audio streams. Each stream declared in the Pro-
duces and Consumes compartments are translated into an output and an input port of the
component, respectively. Figure 8 illustrates this idea.

Also, we to declare a Variable component in the COMPONENTS section of the sub-archi-
tecture for every different type of stream. A Variable component simply holds the data
and acts as a shared-memory component within the sub-architecture. Moreover, it
should only be accessed by internal components of the owning sub-architecture using
Reads/Writes predicates. These are configuration constraints that need to be specified
in the sub-architecture itself. The reason for doing so is to differentiate between func-
tional and data-holding concerns of components. In this way, all data consumed by a
component is directly stocked into a Variable component dealing with the correspond-
ing data type

Page 10 of 15

<= computational=s E
Par=zer

Operational

S5ignal

S5tream

+iparsitr:Dataflow

+iparfsstr

== stream x> B:l
Dataflow
QoS

no ast lost
no tokens lost

Produce s
asts:Streamast

Consume s

tokens:StreamToken

COMPONENTS
parserModule : ARCHITECTURE
[tokens_iport : Finite Stream(Token) ->
asts_oport : Finite Stream(Ast)]
BEGIN
COMPONENTS
parser : Function
[tokens_iport : Finite_Stream(Token) ->
asts_oport : Finite_Stream(Ast)]

tokenVariable : Variable (Token)
astVariable : Variable (Ast)
CONFIGURATION
. .Reads (parser, tokenVariable)
. .Writes (parser, tokenVariable)
. .Reads (parser, astVariable)
. .Writes (parser,astVariable)
END
CONNECTORS

Fig. 8. Translating stream interface type

5.3.2 Operational and Signal Interface Types

SADL lacks precise formalism for the definition of operational connectors, i.e. con-
nectors that mediate operation calls between two components. However, the SADL
style, Procedural_Style, contains the definition of the Called_From predicate taking the
invoked Operation and the calling COMPONENT as parameters. For instance,
Called_From(Blstart,A) means that the component A calls the operation start implemented
by component B. Note that start is declared as an Operation in the COMPONENTS section

of the sub-architecture B.

<<computational=s i3
cl

Operational
+/operational: Operational

Signal
+/signal:Signal

Stream

+i y!m +Iope%n al

<<zsignalz> [<<operational=> [
Signal Dperational
Outgoing Provide s
=iglf) opli)
sig2 () Require s
Incoming
sige i)

/*sigl sig2/opl”sig3
)) e

COMPONENTS
ARCHITECTURE

: Finite Stream(Token)->
Finite_Stream(Ast)]

parserModule :
[tokens_iport
asts_oport :
BEGIN
COMPONENTS
parser :
[tokens_iport
asts_oport :

Function
: Finite_Stream(Token) -:
Finite Stream(Ast)]

tokenVariable
astVariable :
CONFIGURATION
. .Reads (parser, tokenVariable)
. .Writes (parser, tokenVariable)
. .Reads (parser, astVariable)
. .Writes (parser,astVariable)

: Variable (Token)
Variable (Ast)

END
CONNECTORS

Fig. 9. Translating Behavioral Aspects

Page 11 of 15

The Outgoing compartments of the <<signal>> interfaces of a component allow us to
identify the set of signals defined by that component. We therefore declare the signals
in the CONNECTORS section of the sub-architecture representing the architectural com-
ponent. To retain the behavior, we have to translate the ordering constraints on the sig-
nals. To do this we analyze the behavioral view, which provides all information we
need to get the correct sequencing of signals. Figure 9 shows the translation of the
behavior of a component into SADL with respect to the mediation of signal and opera-
tional communication. The static view is helpful for identifying operations and signals,
while the behavioral view helps discover the temporal ordering of signals and opera-
tion calls.

Furthermore, C1 sends the signal sig1 and enters state B. The component C2 (not shown
in the figure) receives sig1 and immediately sends sig2, which is in turn received by C1.
Upon reception of sig2, C1 calls the operation op1 and sends the signal sig3. The order-
ing is translated by means of SADL predicates (Sender, Receiver, Called_From) indicat-
ing the kind of relationship existing between the predicate’s arguments. For instance,
Sender(c1Module!sig1,c1Module) means that c1Module is the sender of the signal sig1. Out-
going signals are declared within the sub-architecture. The constraints that specify the
correct sequencing of the signals are declared in the CONFIGURATION section of the
main architecture.

Another very important thing that has to be taken into account in order to retain the
semantics of the source model is to translate the behavior of connectors. Concern-
BASE and SADL differ on the fact that connectors may have behavior, too. We cannot
specify the behavior of a connector in SADL. In section 5.2, we have mentioned that
we may have to create an additional SADL component to represent a ConcernBASE
connector with behavior. For instance, in the level-3 compiler, the CompilerConnector is
responsible for controlling the execution flow of the components being part of the
compiler system. In SADL, we would model this feature as a component that would
transfer the control to each component in a sequential manner (see the main component
in figure 1). This simply means that we create an SADL sub-architecture for each sim-
ple ConcernBASE connector that has behavior. To achieve this, we have to find all
state machines of a connector that do not transfer signals and operation calls further.
Such an SADL component, standing for a ConcernBASE connector, has no precise
functionality, and therefore, does not own any internal component (Functions, Operation
or Variable component). This new component is only responsible for transferring the
control to other components, much like a main procedure calling other sub-procedures
to delegate different sequential sub-tasks.

5.4 Mapping Connections

In the SADL formalism, a connection represents a data link between two components.
It is further specified as being a CONNECTION constraint relating an output port of a
component with an input port of another component via a data connector (e.g., a Pipe).

We have shown how to identify SADL ports in section 5.3.1, and now, we show how to
relate those ports together to allow data exchange between two components. The only
thing we have to do is to look at the configuration view and identify the simple stream
connectors between any two components. Figure 10 illustrates this concept by showing
that C1 produces a finite stream of characters, C2 consumes this stream, and the con-
nector between the <<stream>> static ports carries it. The connector and the connection
are respectively declared in the CONNECTOR and the CONFIGURATION sections of the
main architecture.

Page 12 of 15

C1 c2

<=stream=> [%] w<streams=x (&) | .-
Dataflow Dataflow COMPONENTS
005 Qo5 clModule : ARCHITECTURE
[-> chars oport : Finite Stream(Character)]
Produce s Produce s BEGIN - -
chars:5tream Char o 5 COMPONENTS
Consume s AErEErrEEEr CONNECTORS
END
c2Module : ARCHITECTURE
[chars_iport : Finite_Stream(Character) ->]
BEGIN
<= computational=> COMPONENTS
+iclicl CONNECTORS
— END
CONNECTORS
streamPipe : Pipe<Finite_ Stream(Character)s>
CONFIGURATION
streamFlow : CONNECTION =
«<=<computational>> Connects (streamPipe, clModule!chars_oport,
oz c2Module!chars_iport)

Fig. 10. Translating Data Connections

5.5 Putting It All Together

The last thing to do is to add IMPORTING and EXPORTING statements before the decla-
ration of the main architecture as depicted in figure 11. An IMPORTING statement
allows the use of architectural elements defined in other specifications and makes them
available for the definition of the current architecture and sub-architectures. An
EXPORTING statement allows an architecture to make its elements available to other
architectural descriptions.
IMPORTING Character,Binding,Ast, Token,Code FROM Compiler Types
IMPORTING Function FROM Functional_ Style
IMPORTING Operation,Called From FROM Procedural Style
IMPORTING Sender,Receiver,Before,Enabling Signal FROM Control Transfer Style
IMPORTING Pipe,Finite_Stream FROM Process_Pipeline_ Style
IMPORTING Variable,Reads,Writes FROM Shared Memory Style
compilerL3 : ARCHITECTURE [... -> ...]
BEGIN
COMPONENTS
lexicalAnalyzerModule : ARCHITECTURE [... -—> ... 1]
BEGIN
COMPONENTS

lexicalAnalyzer : Function [... -> ...]

start : Operation [... -> ...]

tokenVariable : Variable (Token)

END
CONNECTORS

Fig. 11. Putting everything together

6 Tool Support

The ConcernBASE Modeler is an integrated tool for developing architectural descrip-
tions using the ConcernBASE approach (described in section 2). The tool allows one
to translate UML architectural models into SADL descriptions, providing at the same
time a new and elegant way to supply verification support for UML models using the

Page 13 of 15

existing SADL tools. Tool proactiveness supports the developer in modeling because it
actively manages the consistency between different overlapping views. For instance,
when the user wants to instantiate a component type in the configuration view, the tool
proposes a list of components that have been defined in the structural concern space.
When the user is modeling the behavior of architectural elements by means of state
machines, the trigger and call event lists are populated with signals and operations that
already exist, i.e. that have been defined in the corresponding interface elements.
These features reduce user accidents and errors.

The software is single project-based, which means that it only allows one architecture
to be modeled at a given time. One project may contain several model files depicting
the architecture. The structural concern space is depicted by one model; each architec-
tural element declared in the structural concern space model has its own static and
behavioral view models in the same file; finally, the configuration view is defined by
one model. All models are saved on disk using the standard XMI file format.

The graphical user interface is simple, usable and intuitive. It has a menu bar that pro-
vides different options, a tool bar containing frequently-used functions, a left pane dis-
playing a structured view of the architecture, a right pane allowing one to graphically
and easily modify architectural diagrams, and a message pane keeping the user
informed of what is going on within the system. The interface is completely event-
driven and all resources, i.e. labels, texts, messages, images, etc., are internationalized;
this means that the aspect of the interface can be changed and localized without having
to rebuild the system. Finally, a complete built-in help system offers information on the
system itself, its functionalities, and its application domain (ConcernBASE and
SADL).

7 Conclusion and Future Work

In this paper, we have presented the ConcernBASE approach and a method for trans-
lating ConcernBASE models into SADL specifications. The mapping discussed in this
work enabled us to make use of SADL verification tools, and integrate them with the
ConcernBASE Modeler tool. The ConcernBASE approach and the tool supporting it
are young. Both are undergoing refinement and improvement, but they are already
being applied. Although the tool is not yet complete, one can already develop models,
translate them to SADL, edit and syntax-check the resulting SADL descriptions and
save the models to disk. Support for dynamic reconfiguration, an important feature that
allows one to dynamically change the configuration of a system, is planned as future
work.

8 Acknowledgement

This work was partially supported by the Defense Advanced Projects Research
Agency (DARPA) under contract F30602-00-C-0087. Valentin Crettaz would also like
to thank the SRI System Design Laboratory and in particular Robert Riemenschneider
for their support.

References
[11 The Institute of Electrical and Electronics Engineers (IEEE) Standards Board. Recommended Practice for Architec-
tural Description of Software-Intensive Systems (IEEFE-Std-1471-2000). September 2000.

[2] M. Kande and A. Strohmeier. Towards an UML Profile for Sofiware Architecture Descriptions. UML2000 - The Uni-
fied Modeling Language: Advancing the Standard, Third International Conference, York, UK, October 2-6, 2000, S.
Kent, A. Evans, B. Selic (Ed.), LNCS (Lecture Notes in Computer Science)

[3] M. Kande and A. Strohmeier. On The Role of Multi-Dimensional Separation of Concerns in Sofiware Architecture.
Position paper for the OOPSLA2000 Workshop on Advanced Separation of Concerns. (Online at http://lgl-
www.epfl.ch/~kande/Publications/role-of-mdsoc-in-swa.pdf)

[4] M. Moriconi and R. Riemenschneider. Iniroduction to SADL 1.0. SRI Computer Science Laboratory, Technical
Report SRI-CSL-97-01, March 1997.

Page 14 of 15

[3]
[6]
[7]
[8]
[9]
[10]

[11]

[12]

[13]

OMG Unified Modeling Language Revision Task Force. OMG Unified Modeling Language Specification. Version
1.4 draft, February 2001. http://www.celigent.com/omg/umlrtf/

P.Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N Degrees of Separation: Multi-Dimensional Separation of Con-
cerns. Proceedings of the International Conference on Software Engineering - ICSE'99 (May 1999).

D. Garlan, R. T. Monroe and D. Wile. ACME: An Architecture Description Interchange lLanguage. Proceedings of
CASCON 97 (1997).

N. Medvidovic and R. N. Taylor. A4 Classification and Comparison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering, Vol. 26, No.1, January 2000.

P. Clements. 4 Survey of Architecture Description Languages. 8" International Workshop on Software Specification
and Design, Germany, March, 1996.

D. Garlan and A. Kompanek. Reconciling the Needs of Architectural Description with Object-Modeling Notations. In
UML 2000 - The Unified Modeling Language: Advancing the Standard, Third International Conference, S. Kent and
A. Evans (Ed.), LNCS, York, UK, October 2-6, 2000.

O. Weigert (moderator). Panel: Modeling of Architectures with UML. In UML 2000 - The Unified Modeling Lan-
guage: Advancing the Standard, Third International Conference, S. Kent and A. Evans (Ed.), LNCS, York, UK, Octo-
ber 2-6, 2000.

P. Tarr and H. Ossher. Multi-Dimensional Separation of Concerns and The Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component Technology: The State of the Art in Software Devel-
opment. Kluwer, 2000. (To appear.)

Allen R. 4 Formal Approach to Sofiware Architecture. Ph.D. Thesis, Carnegie Mellon University, School of Com-
puter Science, available as TR# CMU-CS-97-144, May (1997).

Page 15 of 15

	Integrating the ConcernBASE Approach with SADL
	1 Introduction
	2 The ConcernBASE Approach
	2.1 Structural Viewpoint
	2.2 Structural Concern Space
	2.3 Static View
	2.4 Behavioral View
	2.5 Configuration View

	3 Compiler Example
	4 Overview of SADL
	5 Mapping ConcernBASE to SADL
	5.1 Mapping Data Types
	5.2 Mapping Architectural Components
	5.3 Mapping Component Interfaces
	5.3.1 Stream Interface Type
	5.3.2 Operational and Signal Interface Types

	5.4 Mapping Connections
	5.5 Putting It All Together

	6 Tool Support
	7 Conclusion and Future Work
	8 Acknowledgement

