Specifying Concurrent System Behavior and Timing
Constraints Using OCL and UML

Shane Sendall and Alfred Strohmeier

Swiss Federal Institute of Technology Lausanne (EPFL)
Software Engineering Laboratory
1015 Lausanne EPFL, Switzerland

email: {Shane.Sendall, Alfred.Strohmeier}@epfl.ch

ABSTRACT Despite advances in implementation technologies for distributed sys-
tems during the last few years, little attention has been given to distributed sys-
tems within software development methodologies. The contribution of this paper
is a UML-based approach for specifying concurrent behavior and timing con-
straints—often inherent characteristics of distributed systems. We propose a
novel approach for specifying concurrent behavior of reactive systems in OCL
and several constructs for precisely describing timing constraints on UML state-
machines.

More precisely, we show how we enriched operation schemas—pre- and post-
condition assertions of system operations written in OCL—Dby extending the cur-
rent calculus with constructs for asserting synchronization on shared resources.
Also, we describe how we use new and existing constructs for UML statema-
chines to specify timing constraints on the system interface protocol (SIP)—a
restricted form of UML protocol statemachine. Finally, we discuss how both the
extended system operation and SIP models are complementary.

KEyworps Unified Modeling Language (UML), Object Constraint Language
(OCL), Pre- and Postcondition, Software System Specification, Concurrent Pro-
gramming, Timing Constraints.

1 Introduction

Software-intensive systems are becoming an increasingly important and integral part
of everyday life, many of which are distributed and constrained by long lists of non-
functional requirements. Expectation and reliance on such software is making the soft-
ware industry reevaluate the importance of software quality. Assuring that the software
has a certain level of quality is a direct concern of the developer. Consequent to this,
we believe that there is an increasing need for approaches that target the development
of distributed systems and that can provide a reasonable level of quality assurance and
rigor in development but still remain cost-effective in terms of time and effort.

In this paper, we propose an approach for specifying two common characteristics of
distributed systems: concurrency and timing constraints. Even though such character-
istics are inherent in more and more systems, largely due to the increasing amount of
internet-based software, UML-based development approaches have paid surprisingly
little attention to integrating timing constraints into specifications of functional
requirements and to providing guidelines for dealing with synchronization dependen-
cies between operations and resources. This is further compounded by UML’s limited
support, in general, for the specification of timing constraints and for mechanisms to
describe synchronization of concurrent activities.

Our proposal extends our previous work: an approach that uses UML [10] and OCL
[16] to specify the behavior of reactive systems [12][13]. Our approach has three prin-
cipal views [11]:

* a model composed of descriptions of the effects caused by operations, which uses
pre- and postcondition assertions written in OCL, called operation schemas;

Page 1 of 15

* a model of the allowable temporal ordering of operations, called the system inter-
face protocol (SIP); and

* a model that describes the system state used in the operation schemas, called the
analysis class model (ACM).

In this paper, we show how we enriched operation schemas by extending the current
calculus with constructs for asserting synchronization on shared resources. Also, we
describe how we use new and existing constructs for UML statemachines to specify
timing constraints on the system interface protocol (SIP)—a restricted form of UML
protocol statemachine. Furthermore, we discuss how both the extended system opera-
tion and SIP models are complementary.

Our aim with this approach is to support the specification of distributed systems in
software development practice. And therefore provide the designer with guidelines on
synchronization dependencies between operations and timing constraints on their exe-
cution. We have a number of criteria that we use to evaluate and guide the development
of our approach; for a full list and discussion see [13]. In this paper, we concentrate on
two of them:

The descriptions of our approach should support the specification of:

* “quantifiable” non-functional requirements, such as performance constraints, in an
integrated way with respect to the functional requirements;

* inherent concurrent properties of the system and quality of service properties.

The paper is composed of six sections. Section 2 briefly presents a case study of an
auction system, which is used to highlight our approach and proposals for extending it
for specifying concurrency and timing constraints. Section 3 describes our proposals
for modeling timing constraints in UML protocol statemachines. Section 4 describes
our proposals for specifying concurrent system operations with operation schemas.
Section 5 presents related work and section 6 concludes the paper.

2 Auctioning System Case Study

For illustrating our proposals and for use as a common example throughout this paper,
we describe an auctioning system, adapted from [6] and [7]. It has many similarities to
internet auctioning sites, such as, eBay (www.ebay.com), and uBid (www.ubid.com),
although it takes a more conservative view on bid validation. The auctioning system
allows people to negotiate over the buying and selling of goods in the form of English-
style auctions over the world-wide web. All potential users of the system must first
enroll with the system; once enrolled they have to log on to the system for each ses-
sion, where they are able to sell, buy, or browse the auctions currently running. Cus-
tomers have credit with the system that is used as security on each and every bid.
Customers can increase their credit by asking the system to debit a certain amount
from their credit card.

A customer that wishes to sell initiates an auction by informing the system of the
goods to auction with the minimum bid price and reserve price for the goods, the start
date of the auction, and the duration of the auction, e.g., 30 days. The seller has the
right to cancel the auction as long as the auction's start date has not been passed, i.e.,
the auction has not already started.

Customers that wish to follow an auction must first join the auction. Note that it is only
possible to join an active auction. Once a customer has joined the auction, he/she may
make a bid. A bid is valid if it is higher than the previous high bid augmented by the
minimum bid increment (calculated purely on the amount of the previous high bid,
e.g., 50 cent increments when bid is between $1-10, $1 increment between $10-50,
etc.), and if the bidder has sufficient funds: the customer's credit with the system is at

Page 2 of 15

least as high as the sum of all his/her pending bids. Bidders are allowed to place their
bids until the auction closes, and place bids across as many auctions as they please.
Once an auction closes, the system calculates whether the highest bid meets the reserve
price given by the seller (English auction style reserve price), and if so, the system
deposits the highest bid price minus the commission taken for the auction service into
the credit of the seller (credit internal to system). The auction system is highly concur-
rent—clients bidding against each other in parallel, and a client placing bids at differ-
ent auctions and increasing his/her credit in parallel.

The system operations for the auctioning system are derived from the use case descrip-
tions of the system, not supplied in this paper. A partial view of the input and output
events exchanged between the system and its actor is shown, in figure 1, by a UML
(specification-level) collaboration diagram. It shows only those events that interest us
for the purposes of this paper, i.e., eleven different input events: proposeAuction, joinAuc-
tion, cancelAuction, increaseCredit, autoWithdraw, cancelAutoWithdraw, placeBid, logOff, logOn,
enrolCustomer, and tick. The tick event from the clock triggers the system operations, clo-
seAuction, increaseCredit and logOff. We use a special icon for the clock actor because we
want to highlight that the actor and related events are special.

proposeAuction
joinAuction

cancelAuction tick/closeAuction,

increaseCredit , .
autoWithdraw ; ig;ge?fseCredut,

cancelAutoWithdraw o <3

placeBid
__logOff s
: Clock

: AuctionControl

12

- Client RejectedBid
Deposit
logOn Wi@raw
% enrolCustomer
o : CreditOrganization
: User

Fig. 1. Collaboration diagram summarizing the interaction between the system and its actors

The analysis class model for the auction control system is shown in figure 2. It shows
all the domain concepts and relationships between them, the combination of which
provides an abstract model of the state space of the system and defines the system
boundary. This model is used as the basis for writing operation schemas, i.e., pre- and
postcondition assertions for each system operation. Inside the system there are five
classes, Auction, Bid, Goods, Customer, and Credit, and outside four actor classes, Clock,
User, Client, and CreditOrganization. The system has six associations: HasHighBid links an
auction with the current high bid if it has one, Sellsin links an auction with its respective
seller (customer), Makes links a customer to his/her bids, JoinedTo links an auction to all
its participants (customers), Has links a customer with his/her credit, and Guarantees
links a bid with the credit that ensures its solvency. Finally, an <<id>> stereotyped asso-
ciation means that the system can identify an actor starting from an object belonging to

Page 3 of 15

the system. For example, given a Customer, cust, we can find its corresponding client
actor with the navigation expression, cust.represents.

<<system>>
AuctionControl
1
1 1 Auction
| isActive
Clook duration Goods
ocl openingfiijrice category
reservePrice description
0.)) Bid
0 1HasH|ghB|d 0.1 amount
0r 1 highBid 1. Guarantees
bidsSecured
User myBids]o..*
0. 0.7
o Makes| JoinedTo
bidder|1 0..* |participants
Selier|_Customer security |0..1
Client 1 <<id>> 1| username Credit
:epresents password 1 Has 1| balance
0.. details /amountReserved
Q1 0. creditCardDetails
=— autoWithdraw

CreditOrganization

Fig. 2. Analysis class model for the AuctionControl system

The System Interface Protocol (SIP) defines the temporal ordering of system opera-
tions—one aspect of the behavior model of the system. An SIP is described with a
UML state diagram. A transition in the SIP is triggered by an input event only if the
SIP is in a state to receive it, i.e., there exists an arc with the input event and the guard
evaluates to true. If not, the input event that would otherwise trigger an operation is
ignored. We use the convention, also mentioned in the UML specification for protocol
statemachines [10], that the action (in our case the operation) need not be explicit if it
has the same name as the event.

The SIP for sequential and trivial systems can normally be described with a single
statemachine. We have made the observation, however, that concurrent systems are
better described with multiple views, one view per perspective on the concurrency.
Apart from providing a clearer description of the protocol, a multi-view approach also
has the advantage that it allows one to focus on and formulate intuitive timing con-
straints, i.e., one can define views that facilitate the description of certain timing con-
straints. However, a multi-view SIP requires rules for composing the different views to
form the ensemble. Rules for composition, completeness, consistency, etc. are out of
the scope of this paper.

We realize the concept of a “view of the SIP” in UML by introducing the stereotype
<<SIPView>> to label the corresponding statemachines that describe a view. The SIP is
defined by the composition of all the statemachines that are members of the same
UML package and that are stereotyped <<SIPViews>>.

Two SIP views for the AuctionControl system are shown in figure 3 and figure 4.

Figure 3 shows an <<SIPView>> statemachine that focuses on the concurrency related to
clients interacting with the system. The ClientActivity state is an auto-concurrent state-
machine, indicated by a multiplicity of many (‘*’) in the upper right-hand corner.
There is a statemachine for each client activity but their number is not predefined,
hence the multiplicity many. The main substate of ClientActivity consists of three parallel
states. The top-most state, SellingByAuction, is also auto-concurrent with the meaning

Page 4 of 15

that the respective client can be selling in many auctions in parallel. The time-triggered
termination of the auction is specified by the time event, after (auctionPeriod). Similarly,
the state in the middle, BiddinglnAnAuction, is auto-concurrent with the meaning that the
client can be participating (bidding) in many auctions in parallel. Finally, the unnamed,
bottom-most state shows that the client may increase his/her credit at any moment. The
client has also the option to allow the system to automatically debit his/her credit card
once the customer’s credit in the system drops below a certain amount. This is realized
by the time event, when (creditisBelowThreshold), which triggers the increaseCredit opera-
tion. Finally, the customer may log out explicitly or be logged out automatically if he/
she has been inactive for a certain period of time, when (maxidlePeriodExpired).

4 <<SIPView>>

ClientView
- ClientActivity *
Entry: startldleClientTimer

SellingByAuction *
proposeAuctio

Exit:
resetldleClientTime

cancelAuction

Exit:
resetldleClientTimer

after(auctiopPeriod)
/closeAugtion

enrolCustomer

enroICLflo\r/n r

| BiddinginAnAuction %) |

L . placeBis,
- joinAuction - when(maxldlePeriod§ xpired
Exit: Exit: TlogO Tt
resetldleClientTime resetldleClientTimer 9

when (creditisBelowThreshold)
/lncCredlt toWithdraw

logOn

increaseCredit

IogOf;©

Jeo)

The client SIP view is complete with respect to the criterion that all (input) events are
accounted for, i.e., with respect to figure 1. However, it does not take into account the
fact that an auction continues regardless of who logs on and off, and for example an
auction may terminate, triggered by after (auctionPeriod), without the seller or any other
participants being logged in. As a consequence, the event would be ignored because
the statemachine is not in a state to trigger a transition. Hence, we need an additional
view to model the case that is unaccounted for.

Exit: Exit:
resetldleClientTimer resetldleClientTimer
cancelAutoW ithdraw

oL

Fig. 3. Client view of the SIP for the AuctionControl system

Figure 4 shows an <<SIPView>> statemachine that focuses on the concurrency related to
auctions in the system. The AuctionActivity state is auto-concurrent with the meaning that
many auctions can take place in parallel, one auction per state. This SIP view covers
the full lifecycle of the auction and is thus independent of whether the seller and/or
participants are logged on or not.

Page 5 of 15

<<SIPView>>
AuctionView
AuctionActivity *
InAuction
proposeAuction .
placeBid *| joinAuction %
cancelAuction !
1
|
1
after(auctionPeriod) !
{ /closeAuction ! b

Fig. 4. Auction view of the SIP for the AuctionControl system

We now give a brief overview of the syntax, usage, and semantics of operation sche-
mas. An operation schema declaratively describes the effect of the operation on a con-
ceptual state representation of the system and by events sent to the outside world. It
describes the assumed initial state by a precondition, and the required change in system
state after the execution of the operation by a postcondition, written in UML’s OCL
formalism [16]. Moreover, we use the same interpretation of assertions as Larch [2]:
when the precondition is satisfied, the operation must terminate in a state that satisfies
the postcondition. Operation schemas as we define them here specify operations that
are assumed to be executed atomically and instantaneously, hence no interference is
possible (this assumption is revised in section 4).

Each system operation, proposeAuction, joinAuction, cancelAuction, increaseCredit, autoWith-
draw, cancelAutoWithdraw, placeBid, logOff, logOn, enrolCustomer, and closeAuction (high-
lighted in figure 1) is described by an operation schema. However for reasons of size,
we highlight just the placeBid operation schema, shown in figure 5. The placeBid opera-
tion schema describes the placeBid system operation. The placeBid system operation
occurs as a consequence of a client placing a bid in an auction. The system must decide
whether the bid is realistic and solvent; if so, the bid is recorded and the credit of the
customer is decremented.

The Operation clause provides the signature of the placeBid indicating that the operation
has three parameters: the target auction, auct, the bidder, cust, and the amount bid, pro-
posedAmount. The Description clause offers a concise natural language description of
the operation. The Use Cases clause provides cross-references to referring use cases.
The Scope clause defines all the classes, and associations from the analysis class
model defining the name space of placeBid. The last element of the Scope clause is an
unnamed association that represents the composition association between Bid and
Auction: the only unnamed association between the two classes. The Declares clause
provides two kinds of declarations: naming, and aliases. The first in the list is a vari-
able name, and the last three in the list are aliases, which are used as name substitutes.
The Sends clause shows that only one type of event may be output by the operation,
i.e., the event RejectedBid may be sent to Client actors. The Pre clause states that our
assumption is that the operation is called while the auction is still active and the cus-
tomer placing the bid is a participant in the auction.

The Post clause states that if the bid is realistic (first if block) and solvent (second if
block) then the system decrements the amount bid from the credit of the bidding cus-
tomer and records the bid in the system as the current high bid, and if there was a pre-
vious bid stored then the customer that held the previous high bid is reimbursed with
the amount which he/she bid. Reimbursing a customer once his/her bid is no longer the
current high bid allows him/her to immediately reuse the money, e.g., for bidding again
or for bidding on other goods. If either the bid was not realistic or solvent then the cli-

Page 6 of 15

ent was sent an exception indicating that the bid was rejected. An event or exception is
specified as sent by placing it in the event queue of the actor instance—sent is used as
a shorthand for this purpose. For example, the second-to-last line of the Post clause
states that an event occurrence of type RejectedBid, whose formal parameter reason
matches the value #impossibleBid, was placed in the event queue of the client actor,
denoted by the navigation expression cust.represents. Further details on the syntax,
informal semantics, and usage of operation schemas can be found in [13][15].

Operation: AuctionControl::placeBid (auct: Auction, cust: Customer, proposedAmount : Money);
Description: A bid is placed with the system. The bid is accepted if it is >= to the highest bid so
far plus the minimum increment or >= to the min. initial price if it is the first bid in the auction;
Use Cases: buy item under auction;
Scope: Auction; Bid; Customer; Credit; HasHighBid; Makes; Guarantees; JoinedTo; Has;
Declares:
bid: Bid;
prevHighBid: Bid Is auct.highBid;
creditOfPrevHighBid: Credit Is prevHighBid.customer.credit;
isFirstBid: Boolean Is auct.bid->isEmpty ();
Sends:
Type: Client::{RejectedBid};
Pre: auct.isActive and auct.participants->includes (cust); -- auction has not finished and cust is a participant
Post:
if (isFirstBid and proposedAmount >= auct.openingBidPrice) or
(proposedAmount >= prevHighBid.amount + minBidlncrement (prevHighBid.amount)) then
if cust.credit.balance @ pre >= amount then - if cust has sufficient funds
cust.credit.balance -= proposedAmount & -- x -= 1 <==> x = x@pre + 1
bid.ocllsNew (amount => proposedAmount) & -- attr of new bid, amount, has value proposedAmount
cust.myBids->includes (bid) & -- <==> cust.bid = cust.bid@pre->including (bid)
auct.bid->includes (bid) &
bid.security = cust.credit &
auct.highBid = bid &
if prevHighBid->notEmpty () then -- if there was a previous bid
creditOfPrevHighBid.balance += prevHighBid.amount &
prevHighBid.security->isEmpty ()
endif
else
(cust.represents).sent (RejectedBid ((reason => #insufficientFunds)))
endif
else
(cust.represents).sent (RejectedBid ((reason => #impossibleBid)))
endif;

Fig. 5. Operation schema for the placeBid system operation

3 Modeling Timing Constraints

Many real-time and reactive systems exhibit behavior that is constrained by time-
related factors, such as response time, waiting time, arrival rate, the number of events
processed in some interval of time, etc. Specifying timing constraints is therefore an
important activity in the development of such systems. Approaches that support the
specification of real-time and reactive systems should support the notion of time-based
constraints.

In our approach, the best candidate model for specifying timing constraints is the SIP.
This is because statemachines already define part of the necessary vocabulary, such as,
event dispatching, event triggered actions, time events, and ordering of events. We
choose to keep timing constraints exclusive to the SIP, i.e., we disallow timing con-
straints in operation schemas, because we want to keep a clean separation of concerns

Page 7 of 15

between the functional description of operations, i.e., operation schemas, and their
temporal ordering, i.e., the SIP.

We now describe the extensions that we have made to UML protocol statemachines for
modeling timing constraints. We propose five time-based properties of transitions,
summarized in figure 6. The first two denote absolute time, befT and aftT; the second
two denote time periods, durT, distT; and the last one denotes a time frequency, freqT.
Such variables provide direct access to timing information related to transitions, facili-
tating the expression of timing constraints.

Property |Description

befT The (absolute) dispatching time for the last event that could trigger the transition (note the
transition may or may not be taken; firing depends on whether the guard was true or not).

aftT The (absolute) time at which the last transition completed (i.e., entered the destination
state).

durT The duration in time of the last transition from the source to the destination state (aka. exe-
cution time of the operation). It is equivalent to: aftT - befT, if and only if the guard holds.

distT The amount of time since the last event was fired in the same activity at the same level in
the state hierarchy, i.e., its destination was the source state of this transition.

freqT The frequency with which the transition is taken, i.e., the number of times the transition was
taken over a certain sampling period: #transitions/period.

Fig. 6. A summary of the five proposed time-based transition properties in UML statemachines

Some timing constraints are invariant. Consider the example where the system must
enforce that an operation opX never takes longer than 5 seconds to execute. This is a
constraint on the performance of the system. In OCL, we could formulate this with the
following invariant that is attached to the respective transition (the transition that trig-
gers the operation opX):

<<invariant>>

self.durT <= 5*Sec
The interpretation of this invariant is that every time the transition is fired (i.e., the
guard evaluates to true) its duration, the time from source to destination states, is
always less than or equal to five seconds. In the case that an event is dispatched but
rejected, the durT variable is not affected and thus there is no obligation from the invari-
ant.

Note that the context is the transition, which is referred to as self. According to OCL,
the self keyword is optional, i.e., it may be dropped when the context is clear.

Apart from stating timing invariants, it is often necessary to state the circumstances in
which events can not or should not be served by the system. Guards on transitions can
be used for that purpose. Using the transition properties summarized in figure 6, we
can define time expressions in guards. For example, we could define a transition with a
guard that rejects all eventXs that are dispatched less than 3 seconds after the previous
event that entered the source state:
[distT >= 3*Sec] eventX / action

In this case, we used the distT variable, which can be thought of as defining the amount
of time spent in the source state of the transition. We could have equally, and perhaps
more intuitively, defined distT as a property of states rather than transitions.

It is also useful to be able to relate an action to a timing constraint failure (defined by a
guard), e.g., output an exception if a time expression in the guard fails. However,
according to the UML specification (pp. 2-170 of [10]), guards on transitions should
not use expressions that cause side-effects. In figure 7 (top), we show how we might
model such “guard failure” actions in standard UML (plus our proposed time-based

Page 8 of 15

properties of transitions), where now is a variable denoting the current time. In the
same figure (bottom) we show our proposed equivalent shorthand notation. Note that
{transA} is a transition label used to identify the transition.

[not rejectionTimeCond]

internalTransition:

eventX
when (now = transA.befT and
rejectionTimeCond) / action J {transA}

<<guard>>
reject: rejectionTimeCond with actionk

. eventX
[e
Fig. 7. Proposed “guard failure” actions in UML statemachines;
Top: Using standard UML notation; Botfom: Using our proposed shorthand notation;

The BNF-like grammar of our proposed shorthand notation is as follows:

guard ==[“cond:” boolean_expression ‘;’] (“reject:” boolean_expression [“with” action ;'])*
The “transition guard” shorthand contains two types of clauses: cond and reject. cond
indicates the condition that must hold for the transition to be fired; it is equivalent to
the original guard definition. We do not, however, allow time expressions to be written
in this clause. reject defines a time-based boolean expression and an optional action. If
the boolean expression evaluates to true then the dispatched event is rejected and the
action is executed, if there is one. There may be many reject clauses, where the mean-
ing is the disjunction of the boolean expressions of each reject clause. The meaning of
the proposed guard as a whole is thus defined by the combination of its two parts: the
condition of the cond clause must be true and the boolean expressions of all the reject
clauses must be false for the transition to have permission to fire. For example, we
attach a guard, which makes use of the “transition guard” shorthand, to the
increaseCredit event transition of figure 3. It ensures that all increaseCredit events that are
made at a frequency greater than 1 per second are rejected and a SystemOverload excep-
tion is output:

<<guard>>

reject: freqT > 1*Hz with ASystemOverload;
We emphasize that all time-related guard expressions are to be placed in the reject
clause and not in the cond clause nor in the operation schemas.

Applying the proposals for time-based constraints made up until now, we present a
number of timing constraints on two SIP views of the AuctionControl system: AuctionView
and BiddingView, shown in figure 8. Note that to be able to identify transitions easily, we
label the ones we reference, e.g., {a}. Also, we attach guards to transitions by UML
notes, which use <<guard>> stereotypes. In this way, we can avoid transition clutter, i.e.,
we avoid to put all the information directly on the transition.

The invariant in the UML note 1 states that the system must guarantee that an auction
starts within 5 seconds provided that there are less than or equal to 500 active auctions,
and within 10 seconds if the number of active actions is between 500 and 1000 (self
refers to the system object). The invariant in the UML note 2 makes references to the
two labels, {a} and {b}, which are used to identify the respective transitions. The con-
straint states that every time an auction activity fires transition a, then b does not occur
within 15 minutes of it nor more than 1 year afterwards. Note that in this example we
changed the AuctionView SIP view from a definitive auction deadline (i.e., after (Auction-
Period) / closeAuction) to one that depends on the idle period between bids (i.e., when
(MaxIdleBidPeriodExpired) / closeAuction). These two invariants are performance con-
straints.

Page 9 of 15

Note 1 <<invariant>> Note 3 <<guard>>
let numActiveAucts: Integer = self.auction->select (a | reject: 30*sec > c.distT > 5*Min
a.isActive)->size () in with ACancelDenied;

(numActiveAucts <= 500 implies a.durT <= 5*Sec) 7

and / |Note invariant

. . . 4+ . / << >>
(500 < numActiveAucts < 1000 implies a.durT <= 10*Sec); / 15*Min < (b.befT - a.aftT) < 1*Yr:
<<SIPView>> / i
AuctionView !

/

AuctionActivity / P*

T

1

T

|

1

1
|
|
|
1
T
1 /
|
i
|
|
|
|
|
|
|
1

/[Entry: startldleBidTimer

proposeAuction /

{a} /

placeBid

cancelAuction /

{c}

¢

when(maxIdleBidTimeExpired) {b} l
{ /closeAuction
(. J

Fig. 8. Timing constraints attached to two SIP views

.

The constraint in the UML note 3 specifies a guard on the cancelAuction event transition
with the meaning: any cancelAuction event that is dispatched within 30 seconds of the
proposeAuction transition or more than 5 minutes after it is rejected and an exception Can-
celDenied is output.

When timing invariants and guards are united with time activated transitions as shown
in figure 3 and figure 4 (when and after time events), we have quite some possibilities
for defining behavior that is constrained by time-related factors.

4 Modeling Concurrent Operations by Schemas

The online auction system is inherently concurrent at the auction level—clients placing
bids in parallel—and at the level of the client’s credit—a client placing bids at different
auctions and increasing his/her credit in parallel. The different views of the SIP high-
light the concurrency between operations. Nevertheless the instantaneous and atomic
execution assumption on operations means that operation schemas describe operations
that execute in isolation, i.e., there is no interference between operations. Furthermore,
if the developer was to design from the placeBid operation schema in figure 5, s/he
would be given no help whatsoever as to which resources are possibly shared and what
synchronization dependencies on resources there are between these operations.

In this section, we propose extensions to the calculus of operation schemas for the pur-
pose of providing such information to designers, according to the concurrency defined
by the SIP. We therefore release the atomicity and instantaneity hypothesis on opera-
tions (that was defined in section 2) and allow the specification of fully concurrent
operations—operations that are possibly changing the state of the system in parallel.

Absence of interference when updating a shared resource is a safety property of the
system. Interference can result in corruption of the resource and erroneous behavior.
Exclusive access to a shared resource when updating it is a property that we want all
possible solutions to exhibit. We propose to impose it in the model as part of the con-

Page 10 of 15

tract on the software. To highlight this constraint on shared resources in operation
schemas, we add a clause to the operation schema format called Shared. Resources
listed in this clause are constrained to be updated in mutual exclusion by the operation.

When writing operation schemas for concurrent operations, the easiest way to formu-
late the pre- and postconditions is to write them like we would do if there were no
interference by other concurrent operations. Unfortunately, this is not possible when
describing changes to a shared variable that can be changed by competing concurrent
operations. In particular, the OCL @pre and the implicit “@post” suffixes are almost
meaningless for shared variables when describing system state changes in postcondi-
tions. Instead, the values of shared variables immediately before and after an update
under mutual exclusion are of prime importance. For example, if an operation adds 7 to
a shared integer variable val, the effect that one wishes to state is that 7 was added to
the value of the variable that was observed immediately before the mutually exclusive
update. We, therefore, introduce the suffixes @preAU and @postAU for shared variables,
which signify the state of the prefix variable immediately before and after an Atomic
Update by the operation, respectively. Thus, we would state the following to signify
that 7 was added to the shared variable val:
val@postAU = val@preAU + 7

Furthermore, when we need to read the value of a shared variable, we need to ensure
that we are referring to a consistent value of the variable, i.e., the variable was read
outside of any period where the variable was updated. Any consistent value of a shared
variable that is taken within the period of the operation’s execution is denoted by suf-
fixing the variable name by @rd. The possible suffixes for shared and unshared vari-
ables and their meanings are summarized in figure 9.

Schemas can still be structured with if-then-else blocks. The branch conditions are
evaluated atomically with respect to the blocks, i.e., there is no possibility for racing
between the evaluation of the branch conditions and the evaluation of the effects. Also,
if-then-else blocks are evaluated immediately, i.e., a condition is either true or false, and
there is no waiting for the condition to become true.

Also, a situation that can arise in a concurrent environment is when a group of effects
relies on a certain condition to stay true during its whole “execution”. We model such
situations with rely blocks (based on the concept of rely conditions, first introduced by
Jones [3], see section 5). The rely block states a condition that must be true immedi-
ately before, immediately after, and during the execution of the body of the block for
the body to take effect. If the rely condition does not stay true throughout execution,
then the effect of the fail part of the rely block is observed to execute instead. The rely
block imposes neither immediate nor wait semantics on the condition, i.e., an imple-
mentation that does a wait until the condition becomes true and then tries to execute
the body, or one that fails if the condition is not initially true are both valid refine-
ments. Also, the rely block does not stop the implementation from making several
attempts (and associated rollbacks) at executing the body of the block. It does however
require that if the condition remains true, then the effect described by the body of the
block will hold. Also, rely blocks should not be nested in if blocks due to the immedi-

Page 11 of 15

ate evaluation semantics of the if. But, rely blocks nested in rely blocks, and if blocks
nested in rely blocks are possible.

Shared variables Unshared variables

X@pre The last possible consistent value of x immediately | The value of x immediately before
before the start of the operation’s execution. the execution of the operation.

X@post The first possible consistent value of x immediately |“@post” is normally implicit (see
after the termination of the operation’s execution. X).

x@preAU | The value of the variable immediately before the — (unused)

operation’s (atomic) update of x.

x@postAU | The value of the variable immediately after the opera-|— (unused)
tion’s (atomic) update of x.

x@rd Any consistent value of x inside the bounds of the — (unused)
operation execution (but outside of any updates to x).

X only allowed in eventually functions. The value of x immediately after the
execution of the operation.

Fig. 9. A summary of the possible variable suffixes in postconditions

Figure 10 shows the operation schema (minus a few clauses that stay unchanged) for
the placeBid system operation. It applies our proposed extended calculus to the placeBid
operation schema of figure 5. The Operation and Pre clauses have not changed from
figure 5. The Declares clause is also similar except it uses time expressions in the name
substitute. The Shared clause defines all associations and variables that are shared. The
Post clause shows a number of differences from the schema of figure 5. The rely block
requires that the balance of the bidder’s credit stays above or equal to zero and the auc-
tion stays active for the body to have effect. If this condition cannot be guaranteed then
one or more of the fail parts are observed to execute, e.g., one or two RejectedBid excep-
tions are output to the bidding client. The body of the rely block changes the state of
the system in the same way as described by the schema in figure 5, except there are
shared variables, which are updated in mutual exclusion. It states that if the proposed
bid is realistic (because we rely on the fact that it is solvent), then it is recorded and set
as the high bid; also the bidder gets the proposed amount debited from his/her credit,
and if there was a previous bid, then the corresponding bidder is reimbursed the credit
that was previously taken for the bid.

Page 12 of 15

Operation: AuctionControl::placeBid (auct: Auction, cust: Customer, proposedAmount : Money);
Declares:bid: Bid;
prevHighBid: Bid Is auct.highBid @ preAU; -- name substitution
creditOfPrevHighBid: Credit Is prevHighBid.customer.credit;
isFirstBid: Boolean Is auct.bid@preAU->isEmpty ();
Shared: Collection(Bid): Makes; Bid: HasHighBid; Collection(Bid): Guarantees;
Collection(Bid): (Auction, Bid); isActive::Auction; balance::Credit;
Pre: auct.isActive and auct.participants->includes (cust);
Post:
rely cust.credit.balance @rd >= 0 and auct.isActive @rd then
if (isFirstBid and proposedAmount >= auct.openingBidPrice) or
(proposedAmount >= prevHighBid.amount + minBidlncrement (prevHighBid.amount)) then
cust.credit.balance @ postAU = cust.credit.balance @ preAU - proposedAmount &
bid.ocllsNew ((amount => proposedAmount)) &
cust.myBids @ postAU->includes (bid) &
auct.bid @postAU->includes (bid) &
bid.security @postAU = cust.credit &
auct.highBid @ postAU = bid &
if prevHighBid->notEmpty () then -- there was a previous bid
creditOfPrevHighBid.balance @ postAU =
creditOfPrevHighBid.balance @ preAU - prevHighBid.amount &
prevHighBid.security @ postAU->isEmpty ()
endif
else
(cust.represents).events-> includes (RejectedBid ((reason => #impossibleBid)))
endif
fail (cust.credit.balance @rd >= 0) then
(cust.represents).events-> includes (RejectedBid ((reason => #insufficientFunds)))
fail (auct.isActive @rd) then
(cust.represents).events-> includes (RejectedBid ((reason => #auctionClosed)))
endre;

Fig. 10. Operation schema for placeBid system operation; non-atomic & non-instantaneous
version

Both the schemas of figure 5 and figure 10 place an obligation on the system to reim-
burse the previous high bid. This “undoing” obligation gives bidders the freedom to
use the credit on other auctions and not to have it pointlessly locked up on a bid that
will not win. One could nevertheless argue that this is overly restrictive and that
abstracting at a higher level would make the feature useless and the specification more
concise. We can realize such an abstraction by using the temporal logic operator, even-
tually [1]. The eventually operator evaluates to true if its corresponding condition
becomes true in some future state. We propose to denote this operator in our calculus
by the function eventually (...), which takes a boolean expression as parameter.

Using eventually we can oblige the system to only debit the bidder’s credit, if and only
if the bid wins the auction (i.e., in the future). Highlighting this in the placeBid opera-
tion schema, we could integrate the following if block into the body of the rely block,
and remove the effects that debit and credit the current and previous bidders’ balance.
We refer to the schema that includes this constraint as version 2, and the original,
shown in figure 10, as version 1.
if eventually (not auct.active and auct.highBid = bid) then -- if, in the future, the bid wins then
cust.credit.balance @ postAU = cust.credit.balance @ preAU - proposedAmount &
bid.security @ postAU = cust.credit
endif
The constraint states that if some time in the future the auction is closed and the current
bid is in fact the winner, then the bidder’s credit is debited by the bid amount and set as
security on the bid. Note that in most cases it should be insured that the eventually

Page 13 of 15

function can be evaluated after some finite time or when some combination of events
occur. In the previous example, for instance, when the auction closes, the eventually
function can be evaluated.

How an implementation meets the schema be it version 1 or version 2 is another issue
that we now discuss. An implementation could, for example, encapsulate the placeBid
operation by a transaction and simply abort and rollback once it finds out that it was
outbid [7]. This solution would be the most obvious given the schema version 1. How-
ever, schema version 2 is less restrictive. For example, a naive implementation could
grab the lock on the bidder’s credit and hold onto it until the end of the auction. This
would mean that all bids on other auctions by the same bidder that come afterwards
would be blocked waiting on the end of the auction of the first bid. This could lead to
starvation, for instance, the auctions for later bids could finish before the auction of the
first bid, etc.

Research is ongoing on integrating a design of a concurrent system into an architecture

[5].
5 Related Work

Formal methods have much to say about the specification of concurrency and timing
constraints in systems. The approach described by Lano in [8] provided some motiva-
tion for this work. It described extensions to Z and VDM for describing concurrency
and timing constraints. Z [14] and VDM [4] are both rich formal notations but they
suffer from the problem that they are very costly to introduce into software develop-
ment environments, as is the case with most formal methods, because of their high
requirements in mathematical mastery.

A number of temporal logic operators have been proposed over the years to describe
concurrent and reactive systems [1]. The advantage of temporal logic operators is that
one can obtain an abstract and concise description of a concurrent system. The disad-
vantage, however, is that the designer is not given much information on how s/he might
go about tackling the problem.

Meyer proposes a programming model for concurrent programming called Simple
Concurrent Object-Oriented Programming (SCOOP) [9]. SCOOP reinterprets the pre-
conditions of design-by-contract as guards and enforces that all methods are atomi-
cally accessed. Therefore, SCOOP assumes a particular object-oriented concurrency
framework. In the context of system-level operations, we prefer to take a more fine-
grained approach to concurrency control—giving the developer more freedom in
designing a solution.

Our motivation for the rely conditions of section 4 comes from the work by Jones [3].
He proposed supplementary clauses to pre- and postconditions called rely and guaran-
tee conditions; they allow one to state under what circumstances the postcondition
makes sense in the presence of concurrency. If an operation is invoked in a situation
when the precondition is false, or if during the execution of the operation the rely con-
dition becomes false, then the specification does not state what the outcome should be.
Otherwise the postcondition will be true at the end of the execution and the guarantee
condition will have been maintained throughout. However, it often the case that the
enforcement of the rely condition during the whole execution of the operation is a con-
straint too strong. This is a consequence of stating concurrency constraints at a coarse
grain, in a top-down approach. For this reason, we propose a rely condition that can be
used at a finer-grain level.

Page 14 of 15

6 Conclusion

The contribution of this paper is a UML-based approach for specifying concurrent
behavior and timing constraints. We proposed a novel approach for specifying concur-
rent behavior of reactive systems based on joint use of operation schemas and UML
protocol statemachines (SIP). We also proposed constructs for precisely describing
timing constraints in the SIP. The operation schemas and the SIP are complementary:
the operation schemas describe the functional responsibilities of the system and the
SIP defines the temporal ordering between operations. The extensions to the SIP for
specifying timing constraints allow one to formalize behavior that is constrained by
time-related factors. The extensions to operation schemas provide guidelines to devel-
opers for dealing with synchronization dependencies between operations and
resources. Consequently, we believe our approach offers developers better support for
designing distributed systems that exhibit concurrent and time-constrained behavior.

References

[11 E. Emerson; Temporal and Modal Logic. In J. van Leeuwen (Ed.), Handbook of Theoretical Computer
Science, Amsterdam, 1989, pp. 995-1072.

[2] J. Guttag et al. The Larch Family of Specification Languages. IEEE Trans Soft Eng 2(5), Sept. 1985.

[31 C. Jones; Tentative steps toward a development method for interfering programs. ACM Transactions
on Programming Languages and Systems, 5(4):596-619, 1983.

[4] C.Jones; Systematic Software Development Using VDM. Prentice Hall, 1986.

[5] M. Kandé and A. Strohmeier; Towards a UML Profile for Software Architecture. UML 2000 — The
Unified Modeling Language: Advancing the Standard, Third International Conference, York, UK,
October 2-6, 2000, S. Kent and A. Evans (Ed.), LNCS (Lecture Notes in Computer Science), no. 1939,
pp- 513-527; Also available as Technical Report (EPFL-DI No 00/332).

[6] J. Kienzle, A. Romanovsky and A. Strohmeier; Open Multithreaded Transactions: Keeping Threads
and Exceptions under Control. 6th International Workshop on Object-Oriented Real-Time Dependable
Systems, Italy, January 2001.

[71 1. Kienzle; Open Multithreaded Transactions: A Transaction Model for Concurrent Object-Oriented
Programming. Ph.D. Thesis EPFL-DI, no 2393, Swiss Federal Institute of Technology in Lausanne,
Software Engineering Lab., 2001.

[8] K. Lano; Formal Object-Oriented Development. Springer-Verlag, 1995.

[9]1 B. Meyer; Object-Oriented Software Construction. Second Edition, Prentice Hall, 1997.

[10] OMG Unified Modeling Language Revision Task Force; OMG Unified Modeling Language Specifica-
tion. Version 1.4 draft, February 2001. http://www.celigent.com/omg/umlrtf/

[11] S. Sendall and A. Strohmeier; UML-based Fusion Analysis. UML ‘99 - The Unified Modeling Lan-
guage: Beyond the Standard, Second International Conference, Fort Collins, CO, USA, October 28-30,
1999, R. France and B. Rumpe (Ed.), LNCS (Lecture Notes in Computer Science), no. 1723, 1999, pp.
278-291, extended version also available as Technical Report (EPFL-DI No 99/319).

[12] S. Sendall and A. Strohmeier; From Use Cases to System Operation Specifications. UML 2000 — The
Unified Modeling Language: Advancing the Standard, Third International Conference, S. Kent and A.
Evans (Ed.), LNCS (Lecture Notes in Computer Science), no. 1939, pp. 1-15; Also available as Tech-
nical Report (EPFL-DI No 00/333).

[13] S. Sendall and A. Strohmeier; Using OCL and UML to Specify System Behavior. Technical Report
(EPFL-DI No 01/359), Swiss Federal Institute of Technology in Lausanne, Software Engineering Lab.
2001; to be published in Lecture Notes in Computer Science, Springer-Verlag.

[14] J. Spivey; The Z Notation: A Reference Manual. Prentice Hall, 1989.

[15] A. Strohmeier and S. Sendall; Operation Schemas and OCL. Technical Report (EPFL-DI No 01/358),
Swiss Federal Institute of Technology in Lausanne, Software Engineering Lab., 2001.

[16] J. Warmer and A. Kleppe; The Object Constraint Language: Precise Modeling With UML. Addison-
Wesley 1998.

Page 15 of 15

	1 Introduction
	2 Auctioning System Case Study
	3 Modeling Timing Constraints
	4 Modeling Concurrent Operations by Schemas
	5 Related Work
	6 Conclusion

