DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://lwww.dit.unitn.it

KNOWLEDGE LEVEL SOFTWARE ENGINEERING

Fausto Giunchiglia, Anna Perini, and Fabrizio Sannicol0

December 2001

Technical Report # DI T-02-0007

Also in: Proceedings of ATAL 2001, Seattle, 2001. Springer Verlag

Knowledge Level Software Engineering

Fausto Giunchiglia!, Anna Perini?, and Fabrizio Sannicold?

! Department of Information and Communication Technology
University of Trento
via Sommarive, 14
1-38050 Trento-Povo, Italy
fausto@dit.unitn.it
sannico@science.unitn.it
2 ITC-Irst
Via Sommarive, 18
1-38050 Trento-Povo, Italy
perini@irst.itc.it

Abstract. We contend that, at least in the first stages of definition of
the early and late requirements, the software development process should
be articulated using knowledge level concepts. These concepts include
actors, who can be (social, organizational, human or software) agents,
positions or roles, goals, and soctal dependencies for defining the obliga-
tions of actors to other actors. The goal of this paper is to instantiate
this claim by describing how Tropos, an agent-oriented software engi-
neering methodology based on knowledge level concepts, can be used in
the development of a substantial case study consisting of the meeting
scheduler problem.

1 Introduction

In the last few years, many factors, noticeably the higher level of connectiv-
ity provided by the network technology and the ever increasing need of more
and more sophisticated functionalities, have caused an exponential growth in
the complexity of software systems. Examples of application areas where this is
the case are e-commerce, e-business and e-services, enterprise resource planning
and mobile computing. Software must now be based on open architectures that
continuously change and evolve to accommodate new components and meet new
requirements. Software must be robust and autonomous, capable of serving users
with little or no computer expertise with a minimum of overhead and interfer-
ence. Software must also operate on different platforms, without recompilations,
and with minimal assumptions about its operating environment and its users.
The increased complexity calls for the development of new techniques and
tools for designing, developing and managing software systems. We believe that
the best way to deal with these problems is to analyze not only the “what” and
the “how” of a software system, but also “why” we are using it. This is best
done by starting the software development process with the early requirements,

2 Fausto Giunchiglia et al.

where one analyzes the domain within which the system will operate, by study-
ing how the use of the system will modify the environment, and by progressively
refining this analysis down to the actual implementation of the single modules.
It is our further belief that this kind of analysis can be fruitfully done only by
using knowledge level notions. In this context, we are using the term “knowl-
edge level” in a technical sense, more precisely in the sense defined by Newell
in his Turing Award Lecture [16]. Examples of knowledge level concepts are ac-
tors, who can be (social, organizational, human or software) agents, positions
or roles, goals, and social dependencies for defining the obligations of actors to
other actors. The use of knowledge level notions is necessary in order to analyze
how the environment (consisting mainly of human actors) works. Using these
notions also in the description of the software modules allows for a uniform and
incremental refinement of the notions introduced in the early requirements [3].
From this perspective, agent oriented programming [14, 1, 23] has the advantage
of allowing for the use of the same (knowledge level) concepts down to the actual
implementation.

In previous papers [20,19,10,11] we have introduced Tropos !, an agent-
oriented software development methodology [8,22] based on the two key ideas
hinted above, namely: (i) the use of knowledge level concepts, such as agent, goal,
plan and other through all phases of software development, and (%) a pivotal role
assigned to requirements analysis when the environment and the system-to-be
is analyzed. Tropos covers five software development phases: early requirements
analysis, late requirements analysis, architectural design, detailed design, and
implementation. A core workflow along the whole development process is the
conceptual modeling activity, performed with the help of a visual modeling lan-
guage which provides an ontology that includes knowledge level concepts. The
syntax of the language is defined through a metamodel specified with a set of
UML diagrams [20]. The language provides also a graphical notation for con-
cepts, derived from the i* framework [24] and a set of diagrams for viewing the
models properties: actor diagrams for describing the network of social depen-
dency relationships among actors, as well as goal diagrams, for illustrating goal
and plan analysis from the point of view of a specific actor. A subset of the
AUML diagrams proposed in [17,18] are adopted to illustrate detailed design
specifications.

The goal of this paper is to instantiate our claim in favour of knowledge
level software engineering by describing how Tropos can be used in the develop-
ment of a substantial case study consisting of the Meeting Scheduler problem,
as described in [21]. This problem is about the specification of software tools
that can support the organization of a meeting, where the preferences of the
important attendees are taken into account, as well as the constraints deriving
from the other participants’ agendas. (See [9, 24] for alternative solutions to this
problem.) The paper is structured as follows. The early requirements analysis is
described in Section 2, the late requirements analysis in Section 3, and the ar-

! From the Greek “tropé”, which means “easily changeable”, also “easily adaptable”.
See also [6, 5] for some early work on Tropos.

A Knowledge Level Software Engineering 3

chitectural design in Section 4. Due to the lack of space, the last two phases, the
detailed design and the implementation phases, are quickly summarized in Sec-
tion 5. Each section starts with a short description of the activities of the phase
described and then shows how these activities are instantiated in the solution of
the Meeting Scheduler problem. The conclusions are presented in Section 6. A
more detailed description of the last two phases can be found in [19)].

2 Early Requirements

Early Requirements is concerned with the understanding of a problem
by studying an existing organizational setting. During this phase, the
requirements engineer models the stakeholders as actors and their inten-
tions as goals. Each goal is analyzed from the point of view of its actor
resulting in o set of dependencies between pairs of actors.

The stakeholders of the Meeting Scheduler domain, according to the problem
statement given in [21], are the following:

— the Meeting Initiator (MI), who wants to organize a meeting (such as a
faculty meeting, a project meeting or a program committee meeting) in an
effective way. In particular, he/she wants to make sure that the important
participants will attend the meeting.

— the Potential Participant (PP), that is, the generic participant, who would
like to attend the meeting, possibly according to his/her preferences, or at
least avoiding conflicts with other meetings.

— the Important Participant (IP), who is a critical person for the objectives
of the meeting. The meeting initiator will take care of checking preferences,
both concerning the meeting location and the date, in order to assure his/her
presence at the meeting.

— the Active Participant (AP), is a meeting attendee who is required to give a
presentation, so he/her possibly needs a overhead-projector or a workstation
with or without network connection, and so on.

All these stakeholders can be modeled as roles that can be played by the
same person. In particular, the meeting initiator can also play the role of the
meeting participant. The complexity of the Meeting Scheduler problem is due to
the fact that usually several meetings, sharing a set of participants, are going to
be organized in parallel.

The initial early requirements model includes the stakeholders (roles) as ac-
tors and their intentions as goals. This model is illustrated with the actor diagram
depicted in Figure 1, where actors are denoted as circles, goals as ovals and soft
goals as cloudy shapes. Soft goals differ from goals because they don’t have a
formal definition, and are amenable to a different (more qualitative) kind of anal-
ysis. Soft goals are most often used to model the system non functional require-
ments (for instance software qualities, see [7] for a detailed description of soft
goals). In particular the actor MI, the meeting initiator, has the goal organize

4 Fausto Giunchiglia et al.

attend the
meeting

effective
organization

ive a
presentation

organize a
meeting

date & place
preferences

Legend I

O Actor C) Goal C:} Softgoal specialization
goal

O_’Q_’O dependency I:l resource

Fig. 1. Actor diagram where the social actors of the environment and their goals are
modeled.

‘

a meeting, possibly in an effective way. This latter objective is modeled as a
soft goal, depicted as a cloudy shape labeled effective organization. The
actor PP, models the potential attendee who has the goal attend the meeting.
The actors AP and IP, that model the active participant and the important par-
ticipant respectively, are modeled as a special type of potential participants. 2
That is, both have the goal attend the meeting, moreover, the actor AP has
the goal give a presentation. Figure 1 shows also a resource dependency be-
tween the actor MI (the depender) and the actor IP (the dependee), concerning
the information on date & place preferences of the important participant
(the dependum). This dependency makes MI vulnerable, in the sense that if IP
fails to deliver the dependum, then MI would be adversely affected in its ability to
achieve the objective of arranging the meeting in such a way that the important
participant attends it.

The early requirements analysis goes on by extending the actor diagram.
This is done by incrementally adding more specific actor dependencies which
come out from a goal and plan analysis conducted from the point of view of
each actor. Figure 2 depicts a fragment of a goal diagram, obtained by explod-
ing part of the diagram in Figure 1. Here, the perspective of MI is modeled.
The diagram appears as a balloon within which MI’s goals are analyzed and
his/her dependencies with the other actors are established. The goal organize a
meeting is AND-decomposed into the subgoals define meeting objectives,
plan the meeting and identify participants. Means to the achievement of
the goal plan the meeting are the following two goals: collect requirements

2 At the moment, it is still an open problem whether this kind of construct will appear
in the final version of the methodology. The question is whether this construct is
really a knowledge level construct or, rather, a software level construct that we are
“forcing” in the early requirements analysis.

A Knowledge Level Software Engineering 5

plan the
meeting

manage automancally manually
conflicts

acqwre
a MSS

effective
organization

Legend e ___--- -
OR-decomposition AND-decomposition ~ Means-Ends Contribution
analysis

Fig. 2. Goal diagram for the actor Meeting Initiator, focusing on its goal organize
a meeting.

and manage conflicts. The goal collect requirements refers to the need of
asking the participants for the following information based on their personal
agenda: dates on which they cannot attend the meeting (the “exclusion set”),
and dates on which they prefer the meeting to take place (the “preference set”).
Moreover, the active participants should specify the need of specific equipment
for their presentation, while important participants could indicate their pref-
erence on the meeting location. So, the goal collect requirements has been
further OR-decomposed into the goals on dates, on needed equipment and
on location. According to [21], conflicts can be solved in several ways, such
as extending the initial date range provided by the meeting initiator, asking
participants to remove some dates from their exclusion set, asking important
participant to add some dates to their preference set or withdrawing some par-
ticipants from the meeting.

The goal plan the meeting could be achieved with the help of a software
tool (see subgoal automatically) or manually (see subgoal manually). The goal
acquire a MSS, that is the goal of acquiring a Meeting Scheduler System (MSS),
is a means for achieving the goal of using a software tool. Both the goals manage

6 Fausto Giunchiglia et al.

preference set

exclusion set

location
preferences

equipment
requirements

get the
appropriate
equipment

Fig. 3. Actor diagram showing the main dependencies between the social actors.

conflicts and collect requirements contribute positively to the fulfillment
of the soft goal effective organization.

Figure 3 depicts the actor diagram resulting from the completion of the goal
analysis of each social actor. MI depends on PP, the potential participant, for the
information preference set and exclusion set, modeled as resources. Vice-
versa, PP depends on MI for satisfying the soft goal best date. Moreover, MI
depends on IP for getting preferences on the meeting location (see the resource
dependency location preferences), and, vice-versa, IP depends on MI for the
fulfillment of the soft goal best location. Finally, MI depends on AP for knowing
the requirements on the specific equipment needed for the presentation, and AP
depends on MI for the goal get the appropriate equipment.

3 Late Requirements

The Late Requirements phase analyses the system-to-be which is intro-
duced as another actor into the model. The system actor is related to the
social actors in terms of actor dependencies; its goals are analyzed and
will eventually lead to revise and add new dependencies with a subset of
the social actors (the users). When the scenario is sufficiently detailed,
this provides a “use-cases” view.

A Knowledge Level Software Engineering 7

be
flexible

be usable by
non-experts

plan the
meeting

effective
organization

Fig. 4. Actor diagram where the system-to-be actor has been introduced.

The system-to-be, that is the Meeting Scheduler System, is represented by
the actor MSS. Figure 4 illustrates the late requirements actor diagram. MI de-
pends on the actor MSS for the goal plan the meeting, one of the MI’s sub-
goals discovered during the goal analysis depicted in Figure 2. The soft goal
effective organization has been also delegated by MI to MSS. The dependen-
cies between the social actors illustrated in Figure 2 need to be revised accord-
ingly. The actor MSS has also two soft goals: be flexible and be usable by
non-experts, which take into account some of the non-functional requirements
described in [21].

The balloon in Figure 5 shows how the MI’s dependums can be fur-
ther analyzed from the point of view of the Meeting Scheduler System. The
goal plan the meeting is decomposed (AND-decomposition) into the sub-
goals identify location, identify possible dates, communicate date &
location to the IP. The goal plan the meeting is a means for obtain-
ing the goal replan dynamically, which is introduced as a goal of the ac-
tor MSS, according to the requirements of the Meeting Scheduler System. The
goal replan dynamically contributes to the soft goal be flexible. The anal-
ysis proceeds by further decomposing goals into sub-goals and by identify-
ing plans that can be considered as means for achieving these latter goals.
So, for instance the goal identify location is AND-decomposed into the
sub-goals get equipment requirements,know location preferences, check
location availability, solve possible conflicts. Analogously, the goal
identify possible dates is AND-decomposed into the sub-goals manage
conflicts, define exclusion sets and define preference sets. The plan
get conflict management policies from the meeting initiator has been in-
troduced as a means for achieving the leaf goal. Analogously, the plans get new
exclusion set, get new preference set, get new location preferences,
are all means for achieving the goal replan dynamically.

8 Fausto Giunchiglia et al.

plan the
meeting

get new
location
preferences

identify

get new location

preference
set

\
comunicate identify
date & location possible dates

get new
exclusion
set

1

X 1
define N
preference sets / ;
1
i
manage define)/
conflicts exclusion sets ,
7
/
4

7/
S v
Y .
N heck locati get conflict 7
AN check location management .
~ availability A ’
N policies Pid
~ -
- -

4
4
~
~
S~ o - -

Fig. 5. Goal diagram of the system-to-be actor.

A set of dependencies between the system-to-be actor and the social ac-
tors can be derived from this analysis, as shown in the actor diagram de-
picted in Figure 6. So, the actor MI delegates to the system actor MSS the
goal plan the meeting, while MSS depends on the actor MI for having a set
of conflict resolution policies and general information about the meet-
ing, such as the meeting objectives and information necessary to identify po-
tential, important and active participants. Moreover, the plans identified in the
goal analysis of the MSS actor motivates a set of resource dependencies among
the system actors and the actors modeling the different roles of the meeting
participants, that is date preferences, location preferences, exclusion
set, equipment requirement. Vice-versa, the following resource dependencies
link these actors and the MSS actor: new date preference, new location
preference, new exclusion set and new equipment requirement. Finally,
PP depends on MSS for being promptly advised about the final date &
location of the meeting. The resulting actor diagram sketches a “use-case”

A Knowledge Level Software Engineering 9

meeting general new equipment
info

requirement
conflict resolution) °
policies equipment

requirement
plan the
meeting final
date & location
new exlcusion
set
new location new date
preference preference
date exclusion PP
preferences set

location
preferences

Fig. 6. Actor diagram resulting from the late requirements analysis.

diagram [13]. Notice how here use-cases are obtained as a refinement of the
Early and Late requirements Analysis. Notice also how this is not the case for
UML [2] where use-case diagrams are an add-on which hardly integrates with
the other diagrams.

4 Architectural Design

Architectural design defines the system’s global architecture in terms of
subsystems, interconnected through data and control flows. Subsystems
are represented as actors and data/control interconnections are repre-
sented as (system) actor dependencies. This phase consists of three steps:
1. refining the system actor diagram,

2. identifying capabilities and

3. assigning them to agents.

Step 1. The actor diagram is refined adding new sub-systems,
according to the following sub-steps:
a inclusion of new actors due to the delegation of sub-
goals, upon goal analysis of the system’s goals;
b inclusion of new actors according to the choice of
a specific architectural style agent (design patterns
[15));
¢ inclusion of new actors contributing positively to the
fulfillment of some non-functional requirements

10 Fausto Giunchiglia et al.

Conflict
_— define Manager
identify set date possible
location

& location dates
information

get
exlcusion set
to/from MI
find a solution
to date conflict
PP get
Interface preference set @
final date get exclusion get preference
& location dates set dates set

set new
dates

find a solution
to location

conflict givelget

get conflict
resolution
policies

set new
preferences

Fig. 7. A Portion of the architectural design model for the system-to-be. Extended
actor diagram.

Here, we focus on an example of step 1.a. A portion of the system architecture
model is illustrated in the actor diagram depicted in Figure 7. Four sub-system
actors have been introduced. The first is the Planner to which MSS delegates
the following goals: identify location, define possible dates, set date
& location. The Planner rests on the actor PP Interface for the achieve-
ment of the goals get exclusion set, get preference set, and on the ac-
tor Conflict Manager for the achievement of the goals find a solution to
location conflict and find a solution to date conflict. Moreover, the
actor Conflict Manager rests on the actor MI Interface to satisfy its goal of
giving and getting information to/from the meeting initiator. Figure 7 includes
also some dependencies with the social actors interacting with the system. In
particular, the actor PP Interface depends on the social actor PP, to have the
plans of getting exclusion and preference dates set, while PP depends on the
actor PP Interface to receive information on the meeting (such as final date
and location). Analogously, the actor MI Interface depends on the social actor
MI to execute the plans of getting conflict resolution policies, and, vice-versa, MI
depends on the actor MI Interface to be be able to set new preferences and
new dates for the meeting to be organized.

Actor Name N

Planner

~NOoO O WN -

©

PP Interface

10
11

Conflict Manager 12
13
14
15

MI Interface 16
17
18
19

A Knowledge Level Software Engineering 11

Capability

identify location

define possible dates

set date & location

get exclusion set

get preference set

find a location conflict solution
find a date conflict solution

provide exclusion set
provide preference set
interact with PP to get exclusion set
interact with PP to get preference set

resolve a conflict

give/get information to/from MI

provide solutions to location conflicts
provide solutions to date conflicts

get & provide info to Conflict Manager
interact with MI to get resolution policies
interact with MI to get new dates

interact with MI to get new preferences

Table 1. Actors capabilities.

The system architecture model can be further enriched with other system
actors according to design patterns [12] that provide solutions to heterogeneous
agents communication and to non-functional requirements, as also described

in [10].

Step 2. The actor capabilities are identified from the analysis of
the dependencies going-in and -out from the actor and from the
goals and plans that the actor will carry on in order to fulfill
functional and non-functional requirements.

Focusing on the system actor Planner depicted in Figure 7, and in par-
ticular on its ongoing and outgoing dependencies we can identify the fol-
lowing capabilities: identify location, define possible dates, set date
& location, get exclusion set, get preference set, find a location
conflict solution, find a date conflict solution. Table 1 lists the ca-
pabilities associated to the actors depicted in the diagram of Figure 7.

Step 3. Agent types are defined. One or more different capabilities
are assigned to each agent.

12 Fausto Giunchiglia et al.

Agent Capabilities

Planner 1, 2, 3, 4, 5, 7

User Interface 6, 8, 9, 10, 11, 16, 17, 18, 19
Conflict Manager 12, 13, 14, 15

Table 2. Agent types and their capabilities. An example.

In general, the agent assignment is not unique and depends on the designer
experience. Table 2 shows an example of agent assignment on a subset of the
system-to-be actors. This table shows that there is more than one mapping from
actors and agent types. Other associations could be easily find out.

5 The last two phases: Detailed Design and
Implementation

Detailed design aims at specifying the agent microlevel, defining capabil-
ities, and plans using the AUML activity diagram, and communication
and coordination protocols using the AUML sequence diagrams. A map-
ping between the Tropos concepts and the constructs of the implementa-
tion language and platform is provided.

Figure 8 depicts, as an example, the capability diagram of the manage
location conflict, one of the capabilities of the agent Conflict Manager.
The capability is triggered by the external event corresponding to the request
of the agent Planner to the Conflict Manager of managing a location con-
flict, given a list of preferred locations and a list of available time periods for
each location. The agent Conflict Manager chooses one of the possible plan
corresponding to different conflict management policies. For instance, policy 1
corresponds to the plan which, for a given date, checks the availability of the
meeting location, according to the stated preference order. If there is no solution
the Conflict Manager tries a policy that has not yet been used or asks the user
for a solution, via the User Interface actor. The plan policy 2 checks, for
a given location, the dates at which the location is not allocated, taking into
account the preferred date first. If there is no solution the Conflict Manager
tries a policy that has not yet been used or asks the user for a solution, via the
User Interface agent. The third policy corresponds to the plan where the user
is asked to: (z) sort the preferred dates, (12) sort the preferred locations, (s12)

A Knowledge Level Software Engineering 13

EE:(Planner, Conflict Manager, manage location conflict)

[
________ >1 gt of preferred
locations
list: location; [=<—~— =~~~ 1
[list of datejtime] which policy?
IE: usepolicy 1 IE: usepolicy 2 IE: usepolicy 3
(policy 1) C policy 2)

|E: post
solution

: post solution |E: post solution

deliver date
& location

1E

Legend

I A s
date & location

C_) plan

IE internal event EE:(Conflict Manager, Planner)

EE external event @

Fig. 8. Capability diagram of manage location conflict, one of the capabilities of
the actor Conflict Manager.

choose which policy, among policy 1 and policy 2 should be tried first3. The
solution is noticed back to the agent Planner.

Finally, the implementation activity follows step by step, in a natural
way, the detailed design specification which is transformed into o skeleton
for the implementation.

This is done through a mapping from the Tropos concepts to the constructs
of the programming language provided by the implementation platform that has
been chosen before starting the detailed design phase. An example, based on the
use of the BDI agent programming platform JACK [4], can be found in [19].

3 Plan diagrams, namely AUML activity diagrams, for the given plans can be straight-
forwardly derived. They are not included here due to lack of space. For the same
reason we can not show here the specification of agent interactions via AUML se-
quence diagram, see [19] for an example.

14

6

Fausto Giunchiglia et al.

Conclusions

In this paper we have applied the Tropos methodology to the case study of the
Meeting Scheduler problem. Tropos is a new software development methodology,
mainly designed, but not only, for agent based software systems, which allows us
to model software systems at the knowledge level. The main goal of this paper
has been to show, via an example, how, by working at the knowledge level, we
can cope with the increased complexity that many new applications require.

7

Acknowledgments

We thank all the Tropos Project people working in Trento and in Toronto.

References

FIPA. Foundation for Intelligent Physical Agents. http://www fipa.org.

2. G. Booch, J. Rambaugh, and J. Jacobson. The Unified Modeling Language User

10.

11.

Guide. The Addison-Wesley Object Technology Series. Addison-Wesley, 1999.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Modeling
early requirements in tropos: a transformation based approach. In Wooldridge
et al. [22].

P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas. JACK Intelligent Agents
- Components for Intelligent Agents in Java. Technical Report TR9901, AQOS,
January 1999. http://www.jackagents.com/pdf/tr9901.pdf.

J. Castro, M. Kolp, and J. Mylopoulos. Developing agent-oriented information
systems for the enterprise. In Proceedings Third International Conference on En-
terprise Information Systems, Stafford UK, July 2000.

J. Castro, M. Kolp, and J. Mylopoulos. A requirements-driven development
methodology. In Proc. 18th Int. Conf. on Advanced Information Systems Engi-
neering CAISE 01, Stafford UK, June 2001.

L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements
in Software Engineering. Kluwer Publishing, 2000.

P. Ciancarini and M. Wooldridge, editors. Agent-Oriented Software Engineering,
volume 1957 of Lecture Notes in AL Springer-Verlag, March 2001.

R. Darimont, A. van Lamsweerde, and P. Massonet. Goal-Directed elaboration of
requirements for a meeting scheduler: problems and lesson learnt. In Proceedings
RE’95 - 2nd IEEE Symposium on Requirements Engineering, pages 194-203, York,
March 1995.

P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia, and P. Bresciani. Agent-
oriented software development: A case study. In S. Sen J.P. Miiller, E. Andre
and C. Frassen, editors, Proceedings of the Thirteenth International Conference
on Software Engineering - Knowledge Engineering (SEKE(1), Buenos Aires - AR-
GENTINA, June 13 - 15 2001.

F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos Software Development
Methodology: Processes, Models and Diagrams. Technical Report No. 0111-20,
ITC - IRST, Nov 2001. Submitted to AAMAS ’02.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

A Knowledge Level Software Engineering 15

Sandra Hayden, Chirstina Carrick, and Qiang Yang. Architectural design patterns
for multiagent coordination. In Proc. of the International Conference on Agent
Systems ’99, Seattle, WA, May 1999.

Ivar Jacobson, Mangus Christerson, Patrik Jonsson, and Gunmar Overgaard.
Object-Oriented Software Engineering: a Use-Case Driven Approach. Addison Wes-
ley, Readings, MA, 1992.

N. R. Jennings. On agent-based software engineering. Artificial Intelligence, 117(2),
2000.

M. Kolp, P. Giorgini, and J. Mylopoulos. An goal-based organizational perspective
on multi-agents architectures. In Proc. of the 8th Int. Workshop on Agent Theories,
Architectures, and Languages (ATAL-2001), Seattle, WA, August 2001.

A. Newell. The Knowledge Level. Artificial Intelligence, 18:87-127, 1982.

J. Odell and C. Bock. Suggested UML extensions for agents. Technical report,
OMG, December 1999. Submitted to the OMG’s Analysis and Design Task Force
in response to the Request for Information entitled “UML2.0 RFI”.

J. Odell, H. Parunak, and B. Bauer. Extending UML for agents. In G. Wag-
ner, Y. Lesperance, and E. Yu, editors, Proc. of the Agent-Oriented Information
Systems workshop at the 17th National conference on Artificial Intelligence, pages
3-17, Austin, TX, 2000.

A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. A Knowl-
edge Level Software Engineering Methodology for Agent Oriented Programming.
In Proc. of the 5th Int. Conference on Autonomous Agents, Montreal CA, May
2001. ACM.

F. Sannicolo’; A. Perini, and F. Giunchiglia. The Tropos modeling language. a
User Guide. Technical report, ITC-irst, December 2001.

A. v. Lamsweerde, R. Darimont, and P. Massonet. The Meeting Scheduler Sys-
tem - Problem Statement. Technical report, Université Catholique de Louvain -
Département d’Ingénierie Informatique, B-1348 Louvain-la-Neuve (Belgium), Oc-
tober 1992.

M. Wooldridge, P. Ciancarini, and organizers G. Weiss, editors. Proc. of the 2nd
Int. Workshop on Agent-Oriented Software Engineering (AOSE-2001), Montreal,
CA, May 2001.

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowl-
edge Engineering Review, 10(2), 1995.

E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Department of Computer Science, 1995.

