Adaptive and Reflective Middleware
for Distributed Real-Time and Embedded Systems

Douglas C. Schmidt

Electrical & Computer Engineering Dept.
University of California, Irvine
Irvine, CA 92697-2625, USA
schmidt@uci.edu

Abstract. Software has become strategic to developing effective distributed
real-time and embedded (DRE) systems. Next-generation DRE systems, such as
total ship computing environments, coordinated unmanned air vehicle systems,
and national missile defense, will use many geographically dispersed sensors,
provide on-demand situational awareness and actuation capabilities for human
operators, and respond flexibly to unanticipated run-time conditions. These
DRE systems will also increasingly run unobtrusively and autonomously,
shielding operators from unnecessary details, while communicating and re-
sponding to mission-critical information at an accelerated operational tempo. In
such environments, it's hard to predict system configurations or workloads in
advance. This paper describes the need for adaptive and reflective middleware
systems (ARMYS) to bridge the gap between application programs and the un-
derlying operating systems and network protocol stacks in order to provide re-
usable services whose qualities are critical to DRE systems. ARMS middleware
can adapt in response to dynamically changing conditions for the purpose of
utilizing the available computer and network infrastructure to the highest degree
possible in support of mission needs.

M otivation

New and planned distributed real-time and embedded (DRE) systems are inherently
network-centric “systems of systems.” DRE systems have historically been developed
via multiple technology bases, where each system brings its own networks, comput-
ers, displays, software, and people to maintain and operate it. Unfortunately, not only
are these “stove-pipe” architectures proprietary, but they tightly couple many func-
tional and non-functional DRE system aspects, which impedes their
1. Assurability, which is needed to guarantee efficient, predictable, scalable, and
dependable quality of service (QoS) from sensorsto shooters
2. Adaptability, which is needed to (re)configure DRE systems dynamically to sup-
port varying workloads or missions over their lifecycles and
3. Affordability, which is needed to reduce initial non-recurring DRE system acqui-
sition costs and recurring upgrade and evolution costs.
The affordability of certain types of systems, such as logistics and mission plan-

ning, can often be enhanced by using commercial-off-the-shelf (COTS) technologies.
However, today’s efforts aimed at integrating COTS into mission-critical DRE sys-

A. Sangiovanni-Vincentelli and J. Sifakis (Eds.): EMSOFT 2002, LNCS 2491, pp. 282-293, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Adaptive and Reflective Middleware for Distributed Real-Time and Embedded Systems 283

tems have largely failed to support affordability and assurability and adaptability
effectively since they focus mainly on initial non-recurring acquisition costs and do
not reduce recurring software lifecycle costs, such as “COTS refresh” and subsetting
military systems for foreign military sales. Likewise, many COTS products lack sup-
port for controlling key QoS properties, such as predictable latency, jitter, and
throughput; scalability; dependability; and security. The inability to control these QoS
properties with sufficient confidence compromises DRE system adaptability and as-
surability, e.g., minor perturbations in conventional COTS products can cause failures
that lead to loss of life and property.

Historically, conventional COTS software has been particularly unsuitable for use
in mission-critical DRE systems due to its either being:

1. Flexible and standard, but incapable of guaranteeing stringent QoS demands,
which restricts assurability or

2. Partidly QoS-enabled, but inflexible and non-standard, which restricts adaptability
and affordability.

As aresult, the rapid progress in COTS software for mainstream business informa-
tion technology (IT) has not yet become as broadly applicable for mission-critical
DRE systems. Until this problem is resolved effectively, DRE system integrators and
warfighters will be unable to take advantage of future advancesin COTS softwarein a
dependable, timely, and cost effective manner. Thus, developing the new generation of
assurable, adaptable, and affordable COTS software technologies is an important
R&D goal.

Key Technical Challenges and Solutions

Some of the most challenging IT requirements for new and planned DRE systems can
be characterized as follows:

* Multiple QoS properties must be satisfied in real-time

» Different levels of service are appropriate under different configurations, environ-
mental conditions, and costs

» Thelevels of service in one dimension must be coordinated with and/or traded off
against the levels of service in other dimensions to meet mission needs and

* The need for autonomous and time-critical application behavior necessitates a
flexible distributed system substrate that can adapt robustly to dynamic changesin
mission requirements and environmental conditions.

Standards-based COTS software available today cannot meet all of these require-
ments simultaneously for the reasons outlined in Section Motivation. However, con-
temporary economic and organizational constraints—along with increasingly complex
requirements and competitive pressures—are also making it infeasible to built com-
plex DRE system software entirely from scratch. Thus, there is a pressing need to
develop, validate, and ultimately standardize a new generation of adaptive and reflec-
tive middleware systems (ARMYS) technologies that can support stringent DRE system
functionality and QoS requirements.

Middleware [Sch014] is reusable service/protocol component and framework software
that functionally bridges the gap between

284 Douglas C. Schmidt

1. the end-to-end functional requirements and mission doctrine of applications and
2. thelower-level underlying operating systems and network protocol stacks.

Middleware therefore provides capabilities whose quality and QoS are critical to
DRE systems.

Adaptive middleware [Loy01] is software whose functional and QoS-related proper-
ties can be modified either

« Satically, eg., to reduce footprint, leverage capabilities that exist in specific plat-
forms, enable functional subsetting, and minimize hardware and software infra-
structure dependencies or

* Dynamically, eg., to optimize system responses to changing environments or
requirements, such as changing component interconnections, power-levels,
CPU/network bandwidth, latency/jitter, and dependability needs.

In DRE systems, adaptive middleware must make these modifications dependably,
i.e., while meeting stringent end-to-end Q0S requirements.
Reflective middleware [Bla99] goes a step further to permit automated examination of
the capabilities it offers, and to permit automated adjustment to optimize those capa-
bilities. Thus, reflective middleware supports more advanced adaptive behavior, i.e.,
the necessary adaptations can be performed autonomously based on conditions within
the system, in the system’s environment, or in DRE system doctrine defined by op-
erators and administrators.

The Structure and Functionality of Middleware

Networking protocol stacks can be decomposed into multiple layers, such as the
physical, data-link, network, transport, session, presentation, and application layers.
Similarly, middleware can be decomposed into multiple layers, such as those shown
in Figure 1.

e =R
APPLICATIONS @
N Y/
Ve N
AVIONICS
DOMAIN-SPECIFIC MIDDLEWARE SERVICES @.‘F REPLICATION

5 SERVICE |
/

COMMON MIDDLEWARE SERVICES

DISTRIBUTION MIDDLEWARE

HOST INFRASTRUCTURE MIDDLEWARE

OPERATING SYSTEMS & PROTOCOLS

HARDWARE DEVICES

Fig. 1. Layers of Middleware and Their Surrounding Context

Adaptive and Reflective Middleware for Distributed Real-Time and Embedded Systems 285

Below, we describe each of these middleware layers and outline some of the COTS
technologies in each layer that are suitable (or are becoming suitable) to meet the
stringent QoS demands of DRE systems.

Host infrastructure middleware encapsul ates and enhances native OS communication
and concurrency mechanisms to create portable and reusable network programming
components, such as reactors, acceptor-connectors, monitor objects, active objects,
and component configurators [SchOOb]. These components abstract away the acci-
dental incompatibilities of individual operating systems, and help eliminate many
tedious, error-prone, and non-portable aspects of developing and maintaining net-
worked applications via low-level OS programming API, such as Sockets or POSIX
Pthreads. Examples of COTS host infrastructure middieware that are relevant for DRE
systemsinclude:

* The ADAPTIVE Communication Environment (ACE) [Sch01], which is a highly
portable and efficient toolkit written in C++ that encapsulates native operating
system (OS) network programming capabilities, such as connection establishment,
event demultiplexing, interprocess communication, (de)marshaling, static and dy-
namic configuration of application components, concurrency, and synchronization.
ACE has been used in a wide range of commercial and military DRE systems, in-
cluding hot rolling mill control software, surface mount technology for “pick and
place” systems, missile control, avionics mission computing, software defined ra-
dios, and radar systems.

* Real-time Java Mrtual Machines (RT-JVMs), which implement the Real-time
Specification for Java (RTSJ) [Bol00]. The RTSJ is a set of extensions to Java that
provide a largely platform-independent way of executing code by encapsulating
the differences between real-time operating systems and CPU architectures. The
key features of RTSJ include scoped and immortal memory, real-time threads with
enhanced scheduling support, asynchronous event handlers, and asynchronous
transfer of control between threads. Although RT-JVMs based on the RTSJ are in
their infancy, they have generated tremendous interest in the R& D and integrator
communities due to their potential for reducing software development and evolu-
tion costs.

Distribution middleware defines higher-level distributed programming models whose
reusable API's and mechanisms automate and extend the native OS network program-
ming capabilities encapsulated by host infrastructure middleware. Distribution mid-
dleware enables developers to program distributed applications much like stand-alone
applications, i.e.,, by invoking operations on target objects without hard-coding de-
pendencies on their location, programming language, OS platform, communication
protocols and interconnects, and hardware characteristics.

At the heart of distribution middleware are QoS-enabled object request brokers,
such as the Object Management Group’'s (OMG) Common Object Request Broker
Architecture (CORBA) [Omg00]. CORBA is distribution middieware that allows
objects to interoperate across networks regardless of the language in which they were
written or the OS platform on which they are deployed. In 1998 the OMG adopted the
Real-time CORBA (RT-CORBA) specification [Sch00a], which extends CORBA with
features that allow DRE applications to reserve and manage CPU, memory, and net-
working resources. RT-CORBA implementations have been used in dozens of DRE
systems, including telecom network management and call processing, online trading

286 Douglas C. Schmidt

services, avionics mission computing, submarine DRE systems, signal intelligence
and C4I SR systems, software defined radios, and radar systems.

Common middleware services augment distribution middleware by defining higher-
level domain-independent components that allow application developers to concen-
trate on programming application logic, without the need to write the “plumbing”
code needed to develop distributed applications by using lower level middieware
features directly. Whereas distribution middleware focuses largely on managing end-
system resources in support of an object-oriented distributed programming model,
common middleware services focus on alocating, scheduling, and coordinating vari-
ous end-to-end resources throughout a distributed system using a component pro-
gramming and scripting model. Developers can reuse these services to manage global
resources and perform recurring distribution tasks that would otherwise be imple-
mented in an ad hoc manner by each application or integrator.

Examples of common middleware services include the OMG's CORBA Services
[Omg98hb] and the CORBA Component Model (CCM) [Omg99], which provide do-
main-independent interfaces and distribution capabilities that can be used by many
distributed applications. The OMG CORBAServices and CCM specifications define
a wide variety of these services, including event notification, logging, multimedia
streaming, persistence, security, global time, real-time scheduling, fault tolerance,
concurrency control, and transactions. Not all of these services are sufficiently refined
today to be usable off-the-shelf for DRE systems. The form and content of these
common middleware services will continue to mature and evolve, however, to meet
the expanding requirements of DRE.

Domain-specific middleware services are tailored to the requirements of particular
DRE system domains, such as avionics mission computing, radar processing, weap-
ons targeting, or command and decision systems. Unlike the previous three middie-
ware layers—which provide broadly reusable *horizontal” mechanisms and serv-
ices—domain-specific middleware services are targeted at vertical markets. From a
COTS perspective, domain-specific services are the least mature of the middleware
layers today. This immaturity is due in part to the historical lack of distribution mid-
dleware and common middleware service standards, which are needed to provide a
stable base upon which to create domain-specific middleware services. Since they
embody knowledge of a domain, however, domain-specific middleware services have
the most potential to increase the quality and decrease the cycle-time and effort that
integrators require to develop particular classes of DRE systems.

A mature example of domain-specific middleware services is the Boeing Bold
Stroke architecture [Sha98]. Bold Stroke uses COTS hardware, operating systems,
and middleware to produce an open architecture for mission computing avionics ca-
pabilities, such as navigation, heads-up display management, weapons targeting and
release, and airframe sensor processing. The domain-specific middleware services in
Bold Stroke are layered upon COTS processors (PowerPC), network interconnects
(VME), operating systems (VxWorks), infrastructure middlieware (ACE), distribution
middleware (Real-time CORBA), and common middleware services (the CORBA
Event Service).

Adaptive and Reflective Middleware for Distributed Real-Time and Embedded Systems 287

Recent Progress

Significant progress has occurred during the last five years in DRE middleware re-
search, development, and deployment, stemming in large part from the following
trends:

* Years of research, iteration, refinement, and successful use — The use of mid-
dleware and DOC middleware is not new [Sch86]. Middleware concepts emerged
alongside experimentation with the early Internet (and even its predecessor AR-
PAnet), and DOC middleware systems have been continuously operational since
the mid 1980's. Over that period of time, the ideas, designs, and most impor-
tantly, the software that incarnates those ideas have had a chance to be tried and
refined (for those that worked), and discarded or redirected (for those that didn’t).
This iterative technology development process takes a good deal of time to get
right and be accepted by user communities, and a good deal of patience to stay the
course. When this processis successful, it often results in standards that codify the
boundaries, and patterns and frameworks that reify the knowledge of how to apply
these technologies, as described in the following bullets.

* The maturation of standards — Over the past decade, middleware standards have
been established and have matured considerably with respect to DRE require-
ments. For instance, the OMG has adopted the following specifications in the past
three years:

0 Minimum CORBA, which removes non-essential features from the full OMG
CORBA specification to reduce footprint so that CORBA can be used in mem-
ory-constrained embedded systems.

0 Real-time CORBA, which includes features that allow applications to reserve
and manage network, CPU, and memory resources predictably end-to-end.

0 CORBA Messaging, which exports additional QoS policies, such as timeouts,
request priorities, and queueing disciplines, to applications.

0 Fault-tolerant CORBA, which uses entity redundancy of objects to support
replication, fault detection, and failure recovery.Robust implementations of

these CORBA capabilities and services are now available from multiple vendors.
Moreover, emerging standards such as Dynamic Scheduling Real-Time CORBA, the
Real-Time Specification for Java, and the Distributed Real-Time Specification for
Java are extending the scope of open standards for awider range of DRE applications.

* The dissemination of patterns and frameworks — A substantial amount of R&D
effort during the past decade has also focused on the following means of promot-
ing the devel opment and reuse of high quality middleware technology:

0 Patterns codify design expertise that provides time-proven solutions to com-
monly occurring software problems that arise in particular contexts [Gam95].
Patterns can simplify the design, construction, and performance tuning of DRE
applications by codifying the accumulated expertise of developers who have
successfully confronted similar problems before. Patterns also elevate the level
of discourse in describing software devel opment activities to focus on strategic
architecture and design issues, rather than just the tactical programming and
representation details.

288 Douglas C. Schmidt

0 Frameworks are concrete realizations of groups of related patterns [John97].
Well-designed frameworks reify patterns in terms of functionality provided by
the middleware itself, as well as functionality provided by an application.
Frameworks also integrate various approaches to problems where there are no
a priori, context-independent, optimal solutions. Middleware frameworks can
include strategized selection and optimization patterns so that multiple inde-
pendently-developed capabilities can be integrated and configured automati-
cally to meet the functional and QoS requirements of particular DRE applica-
tions.

Historically, the knowledge required to develop predictable, scalable, efficient, and
dependable mission-critical DRE systems has existed largely in programming folk-
lore, the heads of experienced researchers and developers, or buried deep within mil-
lions of lines of complex source code. Moreover, documenting complex systems with
today’s popular software modeling methods and tools, such as the Unified Modeling
Language (UML), only capture how a system is designed, but do not necessarily ar-
ticulate why a system is designed in a particular way. This situation has several draw-
backs:

* Re-discovering the rationale for complex DRE system design decisions from
source code is expensive, time-consuming, and error-prone since it’s hard to sepa-
rate essential QoS-related knowledge from implementation details.

» If theinsights and design rationale of expert system architects are not documented
they will be lost over time, and thus cannot help guide future DRE system evolu-
tion.

* Without proper guidance, developers of mission-criticall DRE software face the
Herculean task of engineering and assuring the QoS of complex DRE systems
from the ground up, rather than by leveraging proven solutions.

Middleware patterns and frameworks are therefore essential to help capture DRE
system design expertise in amore readily accessible and reusable format.

Much of the pioneering R&D on middleware patterns and frameworks was con-
ducted in the DARPA ITO Quorum program [DARPA99]. This program focused
heavily on CORBA open systems middleware and yielded many results that transi-
tioned into standardized service definitions and implementations for the Real-time
[Sch98] and Fault-tolerant [Omg98a] CORBA specification and productization ef-
forts. Quorum is an example of how a focused government R& D effort can leverage
its results by exporting them into, and combining them with, other on-going public
and private activities that also used a common open middleware substrate. Prior to the
viability of standards-based COTS middleware platforms, these same R&D results
would have been buried within custom or proprietary systems, serving only as an
existence proof, rather than as the basis for realigning the R&D and integrator com-
munities.

L ooking Ahead

Due to advances in COTS technologies outlined earlier, host infrastructure middle-
ware and distribution middleware have now been successfully demonstrated and de-
ployed in a number of mission-critical DRE systems, such as avionics mission com-
puting, software defined radios, and submarine information systems. Since COTS

Adaptive and Reflective Middleware for Distributed Real-Time and Embedded Systems 289

middleware technology has not yet matured to cover the realm of large-scale, dynami-
caly changing systems, however, DRE middleware has been applied to relatively
small-scale and statically configured embedded systems. To satisfy the highly appli-
cation- and mission-specific QoS requirements in network-centric “system of system”
environments, DRE middleware—particularly common middleware services and
domain-specific services—must be enhanced to support the management of individual
and aggregate resources used by multiple system components at multiple system lev-
elsin order to:

* Manage communication bandwidth, e.g., network level resource capability and
status information services, scalability to 10° subnets and 10° nodes, dynamic con-
nections with reserved bandwidth, aggregate policy-controlled bandwidth reserva-
tion and sharing, incorporation of non-network resource status information, aggre-
gate dynamic network resource management strategies, and managed bandwidth to
enhance real-time predictability.

* Manage distributed real-time scheduling and allocation of DRE system artifacts
(such as CPUs, networks, UAVs, missiles, radar, illuminators, etc), eg., fast and
predictable queueing time properties, timeliness assurances for end-to-end activi-
ties based on priority/deadlines, admission controlled request insertion based on
QoS parameters and global resource usage metrics, and predictable behavior over
WANSs using bandwidth reservations.

* Manage distributed system dependability, e.g., group communication-based replica
management, dependability manager maintaining aggregate levels of object repli-
cation, run-time switching among dependability strategies, policy-based selection
of replication options, and understanding and tolerating timing faults in conjunc-
tion with real-time behavior.

» Manage distributed security, e.g., object-level access control, layered access con-
trol for adaptive middleware, dynamically variable access control policies, and ef-
fective real-time, dependability, and security interactions.

Ironically, thereis currently little or no scientific underpinning for QoS-enabled re-
source management, despite the demand for it in most distributed systems. Today’s
system designers and mission planners develop concrete plans for creating global,
end-to-end functionality. These plans contain high-level abstractions and doctrine
associated with resource management algorithms, relationships between these, and
operations upon these. There are few techniques and tools, however that enable users,
i.e, commanders, administrators, and operators, developers, i.e., systems engineers
and application designers and/or applications to express such plans systematically,
reason about and refine them, and have these plans enforced automatically to manage
resources at multiple levelsin network-centric DRE systems.

Systems today are built in a highly static manner, with allocation of processing
tasks to resources assigned at design time. For systems that never change, thisis an
adequate approach. Large and complex military DRE combat systems change and
evolve over their lifetime, however, in response to changing missions and operational
environments. Allocation decisions made during initial design often become obsolete
over time, necessitating expensive and time-consuming redesign. If the system’s
requisite end-to-end functionality becomes unavailable due to mission and environ-
ment changes, there are no standard tools or techniques to diagnose configuration or
run-time errors automatically. Instead, designers and operators write down their plans

290 Douglas C. Schmidt

on paper and perform such reasoning, refinement, configuration generation, and diag-

nosis manually. This ad hoc process is clearly inadequate to manage the accelerated

operationa tempo characteristic of network-centric DRE combat systems.

To address these challenges, the R&D community needs to discover and set the
technical approach that can significantly improve the effective utilization of networks
and endsystems that DRE systems depend upon by creating middleware technologies
and tools that can automatically alocate, schedule, control, and optimize customiza-
ble—yet standards-compliant and verifiably correct—software-intensive systems. To
promote a common technology base, the interfaces and (where appropriate) the proto-
cols used by the middleware should be based on established or emerging industry or
military standards that are relevant for DRE systems. However, the protocol and
service implementations should be customizable—statically and dynamically—for
specific DRE system requirements.

To achieve these goals, middleware technologies and tools need to be based upon
some type of layered architecture, such as the one shown in Figure 2 [Loy01]. This
architecture decouples DRE middleware and applications along the following two
dimensions:

* Functional paths, which are flows of information between client and remote
server applications. In distributed systems, middleware ensures that this informa-
tion is exchanged efficiently, predictably, scalably, dependably, and securely be-
tween remote peers. The information itself is largely application-specific and de-
termined by the functionality being provided (hence the term “functional path”).

* QoS paths, which are responsible for determining how well the functional interac-
tions behave end-to-end with respect to key DRE system QoS properties, such as

1. How and when resources are committed to client/server interactions at multiple

levels of distributed systems

2. The proper application and system behavior if available resources do not sat-

isfy the expected resources and

3. The failure detection and recovery strategies necessary to meet end-to-end de-

pendability requirements.

In next-generation DRE systems, the middleware—rather than operating systems
or networks in isolation—will be responsible for separating non-functional DRE sys-
tem QoS properties from the functional application properties. Middleware will also
coordinate the QoS of various DRE system and application resources end-to-end. The
architecture in Figure 2 enables these properties and resources to change independ-
ently, e.q., over different distributed system configurations for the same applications.

The architecture in Figure 2 is based on the expectation that non-functional QoS
paths will be developed, configured, monitored, managed, and controlled by a differ-
ent set of specialists (such as systems engineers, administrators, operators, and per-
haps someday automated agents) and tools than those customarily responsible for
programming functional paths in DRE systems. The middleware is therefore respon-
sible for collecting, organizing, and disseminating QoS-related meta-information
needed to

1. Monitor and manage how well the functional interactions occur at multiple levels
of DRE systems and

2. Enable the adaptive and reflective decision-making needed to support non-
functional QoS properties robustly in the face of rapidly changing mission re-
quirements and environmental conditions.

Adaptive and Reflective Middleware for Distributed Real-Time and Embedded Systems 291

These middleware capabilities are crucia to ensure that the aggregate behavior of
complex network-centric DRE systems is dependable, despite local failures, transient
overloads, and dynamic functiona or QoS reconfigurations.

Link 16

%ﬁ?:ﬁ—:ﬁ“@ﬁh

f : QoS Doctrine QoS Doctrine = =
Applications Applications
Interceptor [Sys Cond]_[Sys Cond } { Sys Cond]_[Sys Cond Interceginr

Middleware Middleware

5 o = Mechanism & Property = e =
Domain-Specific Services Managers Domain-Specific Services

Distribution Middleware } Distribution Middleware

Infrastructure Middleware Infrastructure Middleware

g = o
1 =
Endsystem C@ Endsystem

Fig. 2. Decoupling Functional and QoS Paths

To simultaneously enhance assurability, adaptability, and affordability, the middle-
ware techniques and tools developed in future R& D programs increasingly need to be
application-independent, yet customizable within the interfaces specified by a range
of open standards, such as

* The OMG Real-time CORBA specifications and The Open Group’s QoS Forum

* The Java Expert Group Real-time Specification for Java (RTSJ) and the Distrib-
uted RTSJ

» The DMSO/IEEE High-level Architecture Run-time Infrastructure (HLA/RTI) and

» ThelEEE Real-time Portable Operating System (POSIX) specification.

Concluding Remarks

Advances in wireless networks and COTS hardware technologies are enabling the
lower level aspects of network-centric DRE systems. The emerging middleware soft-
ware technologies and tools are likewise enabling the higher level distributed real-
time and embedded (DRE) aspects of network-centric DRE systems, making them
tangible and affordable by controlling the hardware, network, and endsystem mecha-
nisms that affect mission, system, and application QoS tradeoffs.

The economic benefits of middleware stem from moving standardization up several
levels of abstraction by maturing DRE software technology artifacts, such as middle-
ware frameworks, protocol/service components, and patterns, so that they are readily
available for COTS acquisition and customization. This middleware focus is helping
to lower the total ownership costs of DRE systems by leveraging common technology

292 Douglas C. Schmidt

bases so that complex and DRE functionality need not be re-invented repeatedly or
reworked from proprietary “stove-pipe” architectures that are inflexible and expensive
to evolve and optimize.

Adaptive and reflective middleware systems (ARMS) are a key emerging theme
that will help to simplify the development, optimization, validation, and integration of
middleware in DRE systems. In particular, ARMS will allow researchers and system
integrators to develop and evolve complex DRE systems assurably, adaptively, and
affordably by:

e Standardizing COTS at the middleware level, rather than just at lower hard-
ware/networks/OS level s and

e Devising optimizers, meta-programming techniques, and multi-level distributed
dynamic resource management protocols and services for ARMS that will enable
DRE systems to customize standard COTS interfaces, without the penalties in-
curred by today’ s conventional COTS software product implementations.

Many DRE systems require these middleware capabilities. Additional information
on DRE middlewareis available at www. ece. uci . edu/ ~schmi dt .

References

[Bla99] Blair, G.S., F. Costa, G. Coulson, H. Duran, et al, “The Design of a Resource-Aware
Reflective Middleware Architecture”, Proceedings of the 2nd International Conference on
Meta-Level Architectures and Reflection, St.-Malo, France, Springer-Verlag, LNCS, Vol.
1616, 1999.

[Bol0Q] Ballella, G., Gosling, J. “The Real-Time Specification for Java,” Computer, June 2000.

[DARPAQ9] DARPA, The Quorum Program, http://www.darpamil/ito/research/ quo-
rum/index.html, 1999.

[Gam95] GammaE., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[John97] Johnson R., “Frameworks = Patterns + Components’, Communications of the ACM,
Volume 40, Number 10, October, 1997.

[LoyO1] Loyall JL, Gossett M, Gill CD, Schantz RE, Zinky JA, Pal P, Shapiro R, Rodrigues
C, Atighetchi M, Karr D. “Comparing and Contrasting Adaptive Middleware Support in
Wide-Area and Embedded Distributed Object Applications’. Proceedings of the 21st IEEE
International Conference on Distributed Computing Systems (ICDCS-21), April 16-19,
2001, Phoenix, Arizona.

[Omg98a] Object Management Group, “Fault Tolerance CORBA Using Entity Redundancy
RFP’, OMG Docu-ment orbos/98-04-01 edition, 1998.

[Om@g98b] Object Management Group, “CORBA Servcies: Common Object Service Specifica
tion,” OMG Technical Document formal/98-12-31.

[Omg99] Object Management Group, “CORBA Compon-ent Model Joint Revised Submis-
sion,” OMG Document orbos/99-07-01.

[OmgO0] Object Management Group, “ The Common Object Request Broker: Architecture and
Specification Revision 2.4, OMG Technical Document formal/00-11-07”, October 2000.

[Sch86] Schantz, R., Thomas R., Bono G., “The Architecture of the Cronus Distributed Oper-
ating System”, Pro-ceedings of the 6th |EEE International Conference on Distributed Com-
puting Systems (ICDCS-6), Cambridge, Massachusetts, May 1986.

[Sch98] Schmidt D., Levine D., Mungee S. “The Design and Performance of the TAO Real-
Time Object Request Broker”, Computer Communications Special 1ssue on Building Qual-
ity of Service into Distributed Systems, 21(4), 1998.

Adaptive and Reflective Middleware for Distributed Real-Time and Embedded Systems 293

[Sch00a] Schmidt D., Kuhns F., “An Overview of the Real-time CORBA Specification,” |IEEE
Computer Magazine, June, 2000.

[SchoOb] Schmidt D., Stal M., Rohnert H., Buschmann F., Pattern-Oriented Software Archi-
tecture: Patterns for Concurrent and Networked Objects, Wiley and Sons, 2000.

[Sch01] Schmidt D., Huston S., C++ Network Programming: Resolving Complexity with ACE
and Patterns, Addison-Wesley, Reading, MA, 2001.

[Sch014] Schantz R., Schmidt D., “Middleware for Distributed Systems: Evolving the Common
Structure for Network-centric Applications,” Encyclopedia of Software Engineering, Wiley
& Sons, 2001.

[Sha98] Sharp, David C., “Reducing Avionics Software Cost Through Component Based Prod-
uct Line Development”, Software Technology Conference, April 1998.

	Motivation
	Key Technical Challenges and Solutions
	The Structure and Functionality of Middleware
	Recent Progress
	Looking Ahead
	Concluding Remarks
	References

