Skip to main content

Compact Representation of Domain Parameters of Hyperelliptic Curve Cryptosystems

  • Conference paper
  • First Online:
Book cover Information Security and Privacy (ACISP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2384))

Included in the following conference series:

  • 618 Accesses

Abstract

To achieve the same level of security, hyperelliptic curve cryptosystems (HCC) use a smaller field than elliptic curve cryptosystems (ECC). HCC has a more potential application to the product that has limited memory and computing power, for instance Smart cards. We discussed how to represent the domain parameters of HCC in a compact way. The domain parameters include the field over which the curve is defined, the curve itself, the order of the Jocobian and the base point. In our method, the representation of HCC with genus g=4 over F 241 (It can provide the same level of security with 164 bits ECC) only uses 339 bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman, J. De Marrais, M.-D Huang, A Subexponential Algorithm for Discrete Logarithms over the Rational Subgroup of the Jacobians of Large Genus Hyperelliptic Curves over Finite Fields, in ANTS-1, Algorithmic Number Theory, Editors L.M. Adlemand and M-D. Huang, Springer-Verlag, LNCS 877, pp. 28–40, 1994.

    Google Scholar 

  2. L. Adleman, M.-D Huang, Counting rational points on curves and abelian varieties over finite fields, In ANTS-2:, LNCS 1122, Springer-Verlag, pp. 1–16, 1996.

    Google Scholar 

  3. D.G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Mathematics of Computation, Volume 48, pp. 95–101, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Frey and H. Rück, A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves, Mathematics of Computation, 62, pp. 865–874, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  5. S.D. Galbraith, Supersingular curves in cryptography. Available at http://www.cs.bris.ac.uk/stenve

  6. S.D. Galbraith, Weil descent of Jacobians. Presented at WCC 2001. Available at http://www.cs.bris.ac.uk/stenve.

  7. P. Gaudry, An algorithm for solving the discrete log problem on hyperelliptic curves, In B. Preneel(ed.), Eurocrypt 2000, LNCS 1807, Springer-Verlag, pp. 19–34, 2000.

    Chapter  Google Scholar 

  8. P. Gaudry and R. Harley, Counting Points on Hyperelliptic Curves over finite fields. Available at http://www.cs.bris.ac.uk/Tools/Reports/Abstract/2000-gaudry.htm

  9. D.E. Knuth, and E. Donald E., Seminumerical Algorithms, Addison-Wesley, 1981.

    Google Scholar 

  10. N. Koblitz, Elliptic Curve Crypto systems, Mathematics of Computation, 48, pp. 203–209, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Koblitz, Hyperelliptic cryptography, J.of Crypto., No. 1, pp. 139–150, 1989.

    Google Scholar 

  12. P. Lockhart, On the discriminant of a hyperelliptic curve, Trans. Amer. Math. Soc. 342 No. 2, pp. 729–752, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Menezes, Y. Wu, R. Zuccherato, An Elementary Introduction to Hyperelliptic Curves. In: Koblitz, N., Algebraic Aspects of Cryptography, Springer-Verlag Berlin Heidelberg 1998. Available at http://www.cacr.math.uwaterloo.ca/techreports/ 1997/techreports97.html

    Google Scholar 

  14. V.S. Miller, Use of Elliptic Curve in Cryptography, In Advances in Cryptology-CRYPTO’85 (Santa Barbara,Calif.,1985), LNCS. 218, Spring-Verlag, pp. 417–426, 1986.

    Google Scholar 

  15. J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math.Comp., 55, pp. 745–763, 1996.

    Article  MathSciNet  Google Scholar 

  16. H.G. Rück, On the discrete logarithms in the divisor class group of curves, Math.Comp., 68, pp. 805–806, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. Satoh, Canonical Lifting of Elliptic Curves and p-Adic Point Counting-Theoretical Background, Workshop on Elliptic Curve Cryptography-ECC’00, 2000. Available at http://www.exp-math.uni-essen.de/ galbra/eccslides/eccslides.html

  18. T. Satoh, and K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Commentari Math. Univ. St. Pauli 47 (1998), 81–92.

    MATH  MathSciNet  Google Scholar 

  19. I.A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p, Mathematics of Computation 67 (1998), 353–356.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Scholten, and Huijun Zhu, Hyperelliptic Supersingular Curves over Fields of Characteristic 2. Available at http://www.math.berkeley.edu/ zhu/preprints.html

  21. N.P. Smart, The discrete logarithms problem on elliptic curves of trace one, Journal of Cryptology 12 (1999), 193–196.

    Article  MATH  MathSciNet  Google Scholar 

  22. N.P. Smart, Compressed ECC Parameters. Available at http://www.secg.org/collateral/compressed_ecc.pdf

  23. J.A. Solinas, Generalized Mersenne number, Technical Reports, CACR, Waterloo, 1999. Available at: http://www.cacr.math.uwaterloo.ca/techreports/1999/tech_reports99.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, F., Liu, S., Kim, K. (2002). Compact Representation of Domain Parameters of Hyperelliptic Curve Cryptosystems. In: Batten, L., Seberry, J. (eds) Information Security and Privacy. ACISP 2002. Lecture Notes in Computer Science, vol 2384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45450-0_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45450-0_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43861-8

  • Online ISBN: 978-3-540-45450-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics