Skip to main content

A Brief Outline of Research on Correlation Immune Functions

  • Conference paper
  • First Online:
Book cover Information Security and Privacy (ACISP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2384))

Included in the following conference series:

Abstract

The correlation immune functions have a rich history of research. Balanced correlation immune Boolean functions with high nonlinearity and algebraic degree are important in the design of stream cipher systems. In this paper we mainly outline the development in the field of constructing such functions. We also briefly survey related issues in this area.

This draft for the invited lecture has been prepared in collaboration with Dr. Subhamoy Maitra of Indian Statistical Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. H. Bennet, G. Brassard, and J. M. Robert. Privacy amplification by by public discussion. SIAM Journal on Computing, 17:210–229, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bierbrauer, K. Gopalakrishnan, and D. R Stinson. Bounds on resilient functions and orthogonal arrays. In Advances in Cryptology-CRYPTO’94, number 839 in Lecture Notes in Computer Science, pages 247–256. Springer Verlag, 1994.

    Google Scholar 

  3. P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On correlation immune functions. In Advances in Cryptology-CRYPTO’91, number 576 in Lecture Notes in Computer Science, pages 86–100. Springer-Verlag, 1992.

    Google Scholar 

  4. P. Camion and A. Canteaut. Correlation-Immune and Resilient Functions Over a Finite Alphabet and Their Applications in Cryptography. Designs, Codes and Cryptography, 16(2): 121–149, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Canteaut, C. Carlet, P. Charpin and C. Fontaine. Propagation characteristics and correlation immunity of highly nonlinear Boolean functions. In Advances in Cryptology-EUROCRYPT’00, pages 507–522. Springer-Verlag, LNCS 1807, 2000.

    Chapter  Google Scholar 

  6. C. Carlet. More Correlation-Immune and Resilient Functions over Galois Fields and Galois Rings. In Advances in Cryptology-Eurocrypt’ 97, number 1233 in Lecture Notes in Computer Science, pages 422–433. Springer-Verlag, 1997.

    Google Scholar 

  7. C. Carlet. On the coset weight divisibility and nonlinearity of resilient and correlation immune functions. In Sequences and Their Applications-SETA 2001, Discrete Mathematics and Theoretical Computer Science, pages 131–144. Springer Verlag, 2001.

    Google Scholar 

  8. C. Carlet and P. Sarkar. Spectral domain analysis of correlation immune and resilient Boolean functions. Accepted in Finite Fields and Its Applications, 2001.

    Google Scholar 

  9. S. Chee, S. Lee, D. Lee, and S. H. Sung. On the correlation immune functions and their nonlinearity. In Advances in Cryptology-ASIACRYPT’ 96, number 1163 in Lecture Notes in Computer Science, pages 232–243. Springer-Verlag, 1996.

    Chapter  Google Scholar 

  10. J. H. Cheon and S. Chee. Elliptic Curves and Resilient Functions. In ICISC 2000, number 2015 in Lecture Notes in Computer Science, pages 64–72. Springer Verlag, 2000.

    Google Scholar 

  11. J. H. Cheon. Nonlinear Vector Resilient Functions. In Advances in Cryptology-CRYPTO 2001, Lecture Notes in Computer Science. Springer Verlag, 2001.

    Google Scholar 

  12. B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky. The bit extraction problem or t-resilient functions. In 26th IEEE Symposium on Foundations of Computer Science, pages 396–407, 1985.

    Google Scholar 

  13. J. Clark, J. Jacob, W. Millan, and S. Maitra. Evolution of Boolean Functions Satisfying Multiple Criteria with Simulated Annealing. Preprint, 2002.

    Google Scholar 

  14. E. Dawson and C. K. Wu. Construction of correlation immune Boolean functions. In Information and Communications Security, Lecture Notes in Computer Science, pages 170–180. Springer-Verlag, 1997.

    Chapter  Google Scholar 

  15. C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. Number 561 in Lecture Notes in Computer Science. Springer-Verlag, 1991.

    MATH  Google Scholar 

  16. O. V. Denisov. An asymptotic formula for the number of correlation-immune of order k Boolean functions. Discrete Mathematics and Applications, 2(4):407–426, 1992.

    Article  MathSciNet  Google Scholar 

  17. M. Fedorova and Y. V. Tarannikov. On the constructing of highly nonlinear resilient Boolean functions by means of special matrices. In Progress in Cryptology-INDOCRYPT 2001, number 2247 in Lecture Notes in Computer Science, pages 254–266. Springer Verlag, 2001.

    Chapter  Google Scholar 

  18. E. Filiol and C. Fontaine. Highly nonlinear balanced Boolean functions with a good correlation-immunity. In Advances in Cryptology-EUROCRYPT’98, number 1403 in Lecture Notes in Computer Science, pages 475–488. Springer-Verlag, 1998.

    Chapter  Google Scholar 

  19. J. Friedman. On the bit extraction problem. In 33rd IEEE Symposium on Foundations of Computer Science, pages 314–319, 1982.

    Google Scholar 

  20. K. Gopalakrisnan, D. G. Hoffman, and D. R. Stinson. A note on a conjecture concerning symmetric resilient functions. Information Processing Letters, 47(3):139–143, 1993.

    Article  MathSciNet  Google Scholar 

  21. K. Gopalakrishnan. A study of Correlation-immune, resilient and related cryptographic functions. PhD thesis, University of Nebraska, 1994.

    Google Scholar 

  22. X. Guo-Zhen and J. Massey. A spectral characterization of correlation immune combining functions. IEEE Transactions on Information Theory, 34(3):569–571, May 1988.

    Google Scholar 

  23. T. Johansson and E. Pasalic, A construction of resilient functions with high nonlinearity, In IEEE International Symposium on Information Theory, ISIT, June 2000, full version available at Cryptology ePrint Archive, eprint.iacr.org, No.2000/053.

    Google Scholar 

  24. K. Kurosawa, T. Satoh, and K. Yamamoto Highly nonlinear t-Resilient functions. Journal of Universal Computer Science, vol. 3, no. 6, pp. 721–729, Springer Publishing Company, 1997.

    MATH  MathSciNet  Google Scholar 

  25. S. Maitra and P. Sarkar. Enumeration of correlation immune Boolean functions. In 4th Australasian Conference on Information, Security and Privacy, number 1587 in Lecture Notes in Computer Science, pages 12–25. Springer Verlag, April 1999.

    Google Scholar 

  26. S. Maitra and P. Sarkar. Highly nonlinear resilient functions optimizing Siegenthaler’s inequality. In Advances in Cryptology-CRYPTO’99, number 1666 in Lecture Notes in Computer Science, pages 198–215. Springer Verlag, August 1999.

    Chapter  Google Scholar 

  27. S. Maitra and P. Sarkar. Hamming weights of correlation immune Boolean functins. Information Processing Letters, 71(3–4):149–153, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Maitra. Correlation immune Boolean functions with very high nonlinearity. Cryptology ePrint Archive, eprint.iacr.org, No. 2000/054, October 27, 2000.

    Google Scholar 

  29. S. Maitra. Autocorrelation Properties of correlation immune Boolean functions. INDOCRYPT 2001, number 2247 Lecture Notes in Computer Science. Pages 242–253. Springer Verlag, December 2001.

    Chapter  Google Scholar 

  30. S. Maitra. Boolean Functions with Important Cryptographic Properties. PhD Thesis, Indian Statistical Institute, 2001.

    Google Scholar 

  31. S. Maitra and P. Sarkar. Cryptographically significant Boolean functions with five valued Walsh spectra. Theoretical Computer Science, To be published in 2002.

    Google Scholar 

  32. S. Maitra and E. Pasalic. Further constructions of resilient Boolean functions with very high nonlinearity. IEEE Transactions on Information Theory, To be published in July 2002.

    Google Scholar 

  33. W. Millan, A. Clark, and E. Dawson. Heuristic design of cryptographically strong balanced Boolean functions. In Advances in Cryptology-EUROCRYPT’98. Springer-Verlag, 1998.

    Google Scholar 

  34. C. J. Mitchell. Enumerating Boolean functions of cryptographic significance. Journal of Cryptology, 2(3):155–170, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Sung Mo, L. Sangjin, S. Soo Hak, and K. Kwangjo. Improving bounds for the number of correlation immune Boolean functions. Information Processing Letters, 61(4):209–212, 1997.

    Article  MathSciNet  Google Scholar 

  36. J. J. Mykkeltveit. The covering radius of the (128, 8) Reed-Muller code is 56. IEEE Transactions on Information Theory, IT-26(3):358–362, 1983.

    MathSciNet  Google Scholar 

  37. E. Pasalic and T. Johansson. Further results on the relation between nonlinearity and resiliency of Boolean functions. In IMA Conference on Cryptography and Coding, number 1746 in Lecture Notes in Computer Science, pages 35–45. Springer-Verlag, 1999.

    Chapter  Google Scholar 

  38. E. Pasalic, S. Maitra, T. Johansson and P. Sarkar. New constructions of resilient and correlation immune Boolean functions achieving upper bounds on nonlinearity. In Workshop on Coding and Cryptography-WCC 2001, Paris, January 8–12, 2001. Electronic Notes in Discrete Mathematics, Volume 6, Elsevier Science, 2001.

    Google Scholar 

  39. E. Pasalic and S. Maitra. Linear codes in constructing resilient functions with high nonlinearity. In Selected Areas in Cryptography-SAC 2001, number 2259 in Lecture Notes in Computer Science. Pages 60–74, Springer Verlag, August 2001. (An extended version of this paper contains further improved results.)

    Chapter  Google Scholar 

  40. N. J. Patterson and D. H. Wiedemann. The covering radius of the (215,16) Reed-Muller code is at least 16276. IEEE Transactions on Information Theory, IT-29(3):354–356, 1983.

    Article  MathSciNet  Google Scholar 

  41. N. J. Patterson and D. H. Wiedemann. Correction to-the covering radius of the (215,16) Reed-Muller code is at least 16276. IEEE Transactions on Information Theory, IT-36(2):443, 1990.

    MathSciNet  Google Scholar 

  42. O. S. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A, 20:300–305, 1976.

    Google Scholar 

  43. P. Sarkar and S. Maitra. Construction of nonlinear Boolean functions with important cryptographic properties. In Advances in Cryptology-EUROCRYPT 2000, number 1807 in Lecture Notes in Computer Science, pages 485–506. Springer Verlag, 2000.

    Chapter  Google Scholar 

  44. P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient Boolean functions. In Advances in Cryptology-CRYPTO 2000, number 1880 in Lecture Notes in Computer Science, pages 515–532. Springer Verlag, 2000.

    Chapter  Google Scholar 

  45. P. Sarkar. A note on the spectral characterization of correlation immune Boolean functions. Information Processing Letters, 74(5–6):191–195, 2000.

    Article  MathSciNet  Google Scholar 

  46. P. Sarkar and S. Maitra. Cross-correlation analysis of cryptographically useful Boolean functions and S-boxes. Theory of Computing Systems, to be published in 2002.

    Google Scholar 

  47. P. Sarkar and S. Maitra. Balancedness and Correlation Immunity of Symmetric Boolean Functions. Preprint, 2000.

    Google Scholar 

  48. M. Schneider. On the construction and upper bounds of balanced and correlation immune functions. In SAC’97, January 1997.

    Google Scholar 

  49. J. Seberry, X. M. Zhang, and Y. Zheng. On constructions and nonlinearity of correlation immune Boolean functions. In Advances in Cryptology-EUROCRYPT’93, number 765 in Lecture Notes in Computer Science, pages 181–199. Springer-Verlag, 1994.

    Google Scholar 

  50. W. Shan. The structure and the construction of correlation immune functions. MS Thesis, NTE Institute, Xian, 1987.

    Google Scholar 

  51. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory, IT-30(5):776–780, September 1984.

    Google Scholar 

  52. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Transactions on Computers, C-34(1):81–85, January 1985.

    Google Scholar 

  53. D. R. Stinson. Resilient functions and large sets of orthogonal arrays. Congressus Numerantium, 92:105–110, 1993.

    MathSciNet  Google Scholar 

  54. D. R. Stinson and J. L. Massey. An infinite class of counterexamples to a conjecture concerning non-linear resilient functions. Journal of Cryptology, 8(3):167–173, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  55. Y. V. Tarannikov. On resilient Boolean functions with maximum possible nonlinearity. In Progress in Cryptology-INDOCRYPT 2000, number 1977 in Lecture Notes in Computer Science, pages 19–30. Springer Verlag, 2000.

    Google Scholar 

  56. Y. V. Tarannikov. New constructions of resilient Boolean functions with maximal nonlinearity. In Fast Software Encryption-FSE 2001, pages 70–81 in preproceedings, 2001.

    Google Scholar 

  57. Y. V. Tarannikov, P. Korolev and A. Botev. Autocorrelation coefficients and correlation immunity of Boolean functions. In ASIACRYPT 2001, Lecture Notes in Computer Science. Springer Verlag, 2001.

    Google Scholar 

  58. Y. X. Yang and B. Guo. Further enumerating Boolean functions of cryptographic significance. Journal of Cryptology, 8(3):115–122, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  59. X. M. Zhang and Y. Zheng. Cryptographically resilient functions. IEEE Transactions on Information Theory, 43(5):1740–1747, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  60. Y. Zheng and X. M. Zhang. Improved upper bound on the nonlinearity of high order correlation immune functions. In Selected Areas in Cryptography-SAC 2000, number 2012 in Lecture Notes in Computer Science, pages 264–274. Springer Verlag, 2000.

    Google Scholar 

  61. Y. Zheng and X. M. Zhang. On relationships among propagation degree, nonlinearity and correlation immunity. In Advances in Cryptology-ASIACRYPT’00, Lecture Notes in Computer Science. Springer Verlag, 2000.

    Google Scholar 

  62. Y. Zheng and X. M. Zhang. New results on correlation immune functions. In International Conference on Information Security and Cryptology-ICISC 2000, number 2015 in Lecture Notes in Computer Science, pages 49–63. Springer Verlag, 2001.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roy, B. (2002). A Brief Outline of Research on Correlation Immune Functions. In: Batten, L., Seberry, J. (eds) Information Security and Privacy. ACISP 2002. Lecture Notes in Computer Science, vol 2384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45450-0_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-45450-0_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43861-8

  • Online ISBN: 978-3-540-45450-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics