
Programmable Remote Traffic Monitoring

Method Using Active Network Approach

Toru Hasegawa1, Shigehiro Ano1, Koji Nakao1, and Fumito Kubota2

1 KDDI R&D Laboratories Inc
2-1-15 Ohara Kamifukuoka-shi, Saitama 356-8502, Japan

{hasegawa,ano,nakao}@kddilabs.jp
2 Communications Research Laboratory

4-2-1 Nukui Kitamachi, Koganei-shi, Tokyo 184-8795, Japan
kubota@crl.go.jp

Abstract. As the Internet has become an infrastructure for the global
communication, a network failure and a quality degradation have become
a serious problem. In order to solve the problem, a network monitoring
system which monitors the traffic of Internet in real time is strongly de-
sired. Traffic monitors which collect the statistics from captured packets
play a key roll in the system; however, they are not flexible enough for
being used in the rapidly changing Internet. The traditional approach
such that a new traffic monitor is developed for a new requirement re-
sults in a long turn around time of the development. Therefore, we have
proposed a flexible network monitoring system which consists of pro-
grammable traffic monitors. Traffic monitors are made programmable
by introducing active network techniques; therefore, we call the network
monitoring system as the active monitor network. This paper describes
the implementation and evaluation of the active monitor network.

1 Introduction

As the Internet has become an infrastructure for the global communication, a
network failure and a quality degradation have become a serious problem. In
order to solve the problem, a network monitoring system is desired in order
to monitor the quality and traffic of Internet in real time. Traffic monitors are
key elements of the network motoring system. They are real time measurement
tools which collect the statistics of the traffic from packets captured from a
tapped link. Many traffic monitors are used for various purposes. MRTG (Multi
Router Traffic Grapher) [1], which collects the number and bytes of IP packets
from an MIB (Management Information Base) of a router, is used to detect
congested links of an IP network. NetFlow [2] and NeTraMet [3], which collect
the number and bytes of IP packets and TCP packets for flows, are used to
monitor a traffic amount of an individual user. Recently, new traffic monitors
[4], which collect TCP level quality statistics, are used to monitor a quality
provided to an individual user.

The traffic monitors are useful to monitor an IP network; however, they
are not flexible enough for being used in the rapidly changing Internet. The

I.W. Marshall, S. Nettles, and N. Wakamiya (Eds.): IWAN 2001, LNCS 2207, pp. 49–64, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



50 Toru Hasegawa et al.

traditional approach such that a new traffic monitor is developed for a new re-
quirement results in a long turn around time of the development. Although new
network monitoring applications such as a DOS (Denial of Service) attacker de-
tection and a real time traffic quality monitor are emerging, the traffic monitors
for them cannot be developed in time for network operatorsf requirements. Be-
sides, traditional traffic monitors work stand alone; therefore, it is difficult to
develop a network monitoring system which monitors a whole IP network in real
time using traffic monitors distributed over an IP network.

In order to achieve a flexible network monitoring system, the introduction
of active network approach [5] is very promising. We propose an active monitor
network which consists of programmable traffic monitors and a manager. We call
a programmable traffic monitor as an active monitor. A manager can dynami-
cally load an analysis program which analyzes packets captured from a tapped
physical link. This programmability achieves a flexible network monitoring sys-
tem.

On the contrary, there has been much research [6,7,8,9,10] on introducing
the active network into network management, of which network monitoring is
an important role. In the above active network management systems such as
SmartPacket [6], NetScript [7], and ANCORS [10], a management node and an
agent node are made programmable. The programmability achieves so an intel-
ligent agent behavior that MIB information is automatically checked. However,
the active network management systems cannot make a network monitoring
node, i.e., a traffic monitor, programmable. Although a program which runs on
an agent analyzes the MIB information, it cannot analyze captured packet them-
selves. Recently, an active monitoring systems have been proposed [11], called as
ANMOS Monitoring Tool. The active monitoring system focuses on monitoring
an active network itself in order to know how an active network behaves. On the
contrary, our active monitor focuses on traditional connectionless networks such
as the Internet. Besides, our objective is to make a traffic monitor programmable
so that network operators can collect traffic information which could not be col-
lected unless parameters and sequences of captured packets were analyzed. We
believe that our paper is the first proposal of the introduction of active network
into traffic monitors in the literature.

In this paper, we propose an active monitor network and discuss the imple-
mentation and evaluation. In section 2, we describe the overview of the active
monitor network. In section 3, we describe the implementation overview. In sec-
tion 4, we describe the experiment results using the active monitor network. In
section 5, we discuss the active monitor network approach.

2 Overview of Active Monitor Network

An active monitor network, as shown in Fig. 1, is a monitoring network which
monitors an IP network consisting of routers and physical links. It consists of
active monitors and a manager. An active monitor is a programmable traffic
monitor, and consists of a platform and an analysis program which is remotely



Programmable Remote Traffic Monitoring Method 51

loaded from a manger. An analysis program captures packets from a tapped
physical link and analyzes the captured packets. The analysis results are stored
in a result storage. A manager is also programmable. A monitoring application
program manages active monitors, and runs on a manager platform. The appli-
cation program remotely gets a result of an analysis program, and knows quality
and traffic of a whole monitored IP network.

Manager Active Monitor

Router

Platform

Application
Program

Platform

Analysis
Program

Active Monitor

Load/Unload

Get result

Analysis
Program

Fig. 1. Active Monitor Network.

2.1 Programmability of Active Monitor

Programmability of active monitor is achieved in the following way: An analysis
program runs on a platform as shown in Fig.2. It is loaded beforehand from a
manager to an active monitor via a network at any time without the monitor’s
being stopped. An analysis program corresponds to a programmable switch [12]
in an active network. A standard programming language such as Java and C is
used for writing an analysis program.

The platform provides an execution environment to analysis programs. It
provides the following functions:

– Execution (Interpretation) of analysis program
– Load of analysis program
– Unload of analysis program
– Message communication to a manager
– Packet capture / filter

2.2 Programmability of Manager

A manager is also made programmable. A manager executes a network monitor-
ing application program (application program in Fig. 1 and Fig.2). An applica-
tion program controls active monitors located at many places in an IP network.



52 Toru Hasegawa et al.

Active Monitor

Platform

Analysis Program

Load/
Unload

Packet
Capture/
FilterMessage

Communication

Interpret
ation

Communication
Board

Communication
Board

Tapped Physical Link

Packet

Packet
analyze

Result
Storage

Platform

Load/
Unload Topology

Management
Message
Communication

Interpret
ation

Communication
Board

Analysis
Program

Application Program

Load / Unload

Get Result

Manager

API

Fig. 2. Manager and Active Monitor.

The structure of manager is similar to an active monitor. It consists of an ap-
plication program and a platform. The platform provides the load / unload,
execution and message communication functions as the active monitor platform
does. The platform also provides the topology management function, and it is
described in section 2.4.

2.3 Communication between Manager and Active Monitor

The relationship of a manager and an active monitor is the same as that of
a manager and an agent of traditional network management methods such as
OSI management and SNMP based Internet management. An analysis program
executed on an active monitor analyzes captured packets and stores an analysis
result in a result storage like an MIB of SNMP. A manager gets an analysis result
from an active monitor’s result storage using client-server style communication.
Three client-server style message exchanges are defined for the three operations:
load and unload of analysis program and get result.

2.4 Network Topology

The manager platform provides an application program with a topology infor-
mation of a monitored IP network and an active monitor network. The topology
information is a list of pairs of link identifiers from the following two view points:
First, a link is identified by source and destination router IP addresses in a mon-
itored IP network. Second, the same link is assigned a unique identifier, which
consists of an active monitor IP address and an identifier in the active monitor,
within an active monitor network. The topology information is used for many
purposes by an application program.



Programmable Remote Traffic Monitoring Method 53

Analysis Obj

ServerSocket
Obj

System Obj

MessageComm Obj

Socket
Obj

Libpcap / BPF

Jpcap Obj

Communication
Board

TCP/IP

packet
capture/
filter

Method Invocation

listen send/receive

JVM (Java Virtual Machine)

listen
message send/
receive

Analysis Class Obj

load req

create

Packet Obj
handle
Packet

instance

Communication
Board

create

Fig. 3. Object Structure of Active Monitor.

3 Implementation of Active Monitor Network

An active monitor and a manager have been implemented using Java as the
software which runs on standard PCs (Personal Computers) and workstations.
Java is adopted as a programming language for writing an analysis program
because of high productivity and portability. Currently, the developed software
runs on Solaris 2.7/2.8 and Solaris 2.7/2.8 for x86 operating systems.

3.1 Active Monitor

(1) Program Structure
As shown in Fig. 3, an active monitor consists of Java objects (instances of

Java classes) which run on the JVM (Java Virtual Machine). An Analysis ob-
ject corresponds to an analysis program of section 2. The load and unload of
an Analysis object is achieved by the creation and destroy of the class object of
the Analysis class. The other objects constitute a platform. Individual functions
of the platform are implemented as Java classes, and are executed as Java ob-
jects. A System object manages the platform and controls the other objects. A
MessageComm object provides message communication using the two standard
Java objects : ServerSocket and Socket objects. A ServerSocket object is used to



54 Toru Hasegawa et al.

listen a new TCP connection, and a Socket object is used to send and receive
messages using TCP/IP. A Jpcap object is a public domain Java object [13],
and provides the packet capture and packet filter. A Jpcap object uses a libpcap
and BPF (Berkley Packet Filter) programs which are outside the JVM for the
packet capture and filter, respectively. Libpcap program is a public domain pro-
gram which captures IP packets from a communication board. BPF is a public
domain packet filter program. When a Jpcap object receives a packet from the
libpcap/BPF program, it creates a Packet object.
(2) Analysis Class

When users need a new monitoring application, they write a class as a sub-
class of the SuperAnalysis class which provides a framework of packet analysis.
They need overwrite three methods: the init, handlePacket and getResult meth-
ods. The init method is used to initialize an Analysis object. The handlePacket
method is a main method. It is invoked by a Jpcap object when a packet is
captured from a tapped link. The packet analysis is written in this method. The
getResult method is used to send back an analysis result using a MesseageComm
object.

An example of Analysis class, ExAnalysis, is shown in Fig. 4. This class
calculates how many UDP packets whose source IP and destination IP addresses
are specified by a packet filter condition (aFilter in Fig.4) are transferred on a
tapped physical link.

When an ExAnalysis object is created, the init method is invoked by a System
object with linkId, srcIPaddr and aFilter arguments. The arguments are sent
from an application object of a manager. The aFilter is a BPF filter condition
which specifies UDP packets of the specified source and destination IP addresses.
Then, the run method is invoked, and it starts a Jpcap object assigning a thread.
When the Jpcap object finds a packet which matches the filter condition specified
by the aFilter, it invokes the handlePacket method. The handlePacket method
further checks whether the destination port number of the UDP packet is the
same as the destination port number of the targetPort instance variable. This
procedure is infinitely repeated by the time when the quit method is invoked.

When an application object of the manager sends a get result request, a
MessageComm object calls the getResult method. The getResult method checks
whether the detected UDP packet number is larger than the threshold specified
by the threshold. Then, it returns the result as a string to the MessageComm
object, and the MessageComm object sends back the result to the manager.
(3) API (Application Programming Interface)

There is no constraint when writing Analysis classes. Users can use any meth-
ods provided by Java standard classes. The classes of Jpcap object provide anal-
ysis methods at MAC (Media Access Control), IP, UDP and TCP levels. The
classes provide methods which get and set protocol parameters of the above pro-
tocols. On the contrary, the analysis of the protocols which upper than TCP,
such as SMTP and WWW, is written in the handlePacket method using Java
by users themselves.



Programmable Remote Traffic Monitoring Method 55

public class ExAnalysis extends SuperAnalysis {
private int packNum = 0; // detected UDP packet no.
private int threshold = 100; // threshold
private int targetPort = 0; // destination port
public void init (int linkID, String srcIPaddr, String aFilter, int dstPort, …)

{
targetPort = dstPort
super.init (linkID, srcIPAddr, aFilter, ….);
….. }

public void handlePacket (UDPPacket packet) {
if (packet.dst_port == targetPort) {
packNum++; // count up
….. } }

public String getResult () {
String result; // Result storage
If (packNum > threshold) { result = “TRUE”; }
else { result = “FALSE”; }
return (result); }

public void run () {
aJpcapObj.loopPacket (-1,this); }

public void quit () {
….. } }

Fig. 4. Example Analysis Class.

3.2 Manager

(1) Program Structure
The program structure of manager is shown in Fig. 5. The abstract class

SuperApplication is provided for writing a network monitoring application. The
platform consists of Java classes such as System, MessageComm, ServerSocket,
Socket classes which are similar to those of the active monitor. Besides, the
classes for topology management is provided. The class files of Analysis classes
are stored as files.
(2) Application Class

A network monitoring application is written as a subclass of the SuperAp-
plication class, and its object corresponds to the Application object in Fig. 5. A
typical procedure of an Application object is as follows: First, the Application
object loads a class file of an Analysis class to active monitors. The Analysis
class is written beforehand and is compiled using a Java compiler to the class
file by users. Second, the Application object gets analysis results from the loaded
Analysis objects, and analyzes the results from the network wide view point. Fi-
nally, the Application object unloads the loaded Analysis objects at the active
monitors.



56 Toru Hasegawa et al.

Application Obj

ServerSocket Obj

System Obj

MessageComm Obj

SocketObj

TCP/IP

Method Invocation

listen send/receive

JVM (Java Virtual Machine)

listen
message send/
receive

Application Class Obj

load req

create

instance

Communication
Board

Topology
Obj

read

Class file
of Analysis
class

Fig. 5. Object Structure of Manager.

(3) Topology Management
A Topology object is provided so that users can write a method in consid-

eration of locations of active monitors and a topology of a monitored IP net-
work. The Topology object is a table of Link objects each of which represents
a link. The link object contains source and destination router IP addresses, a
bandwidth and an active monitor identification which consists of an active mon-
itor IP address and a link identifier. The link identifier is assigned uniquely in
the active monitor. Figure 6 and Table 1 show a monitored IP network and
a table maintained by a Topology object, respectively. The monitored network
consists of three routers whose IP addresses are 133.128.10.1, 133.128.12.1 and
133.129.11.1. Three active monitors are located to tap the all links among the
routers. Each line of Table 1 corresponds to a Link object.

Many basic methods are provided to get the following basic information
pieces from a Link object : an active monitor identifier, source and destination
router IP addresses, a bandwidth of a link, a total Link object number, a Link
object next to the currently accessed Link object and so on. In addition to the
basic methods, many methods are provided to analyze a network topology of
a monitored IP network. For example, the SPFmake method creates a short-
est path first tree whose root is a specified. Bandwidths of a Topology object
corresponds to metric of OSPF (Open Shortest Path First) routing protocol. If
a monitored IP network uses OSPF as a routing protocol, the created shortest
path tree can be used to know a route on which a captured IP packet is trans-
ferred. The MaxHop method calculates a maximum hop (link) number from a
specified source router to a specified destination router.



Programmable Remote Traffic Monitoring Method 57

Active Monitor
133.256.10.1
Link identifier
0 1 2

133.256.12.1
0 Link
1 identifier0

Link identifier
133.256.11.1

133. 128.10.1 133. 128.12.1

133. 129.11.1

Fig. 6. Example Monitored IP Network.

Table 1. Topology Object.

133.128.10.1133.129.11.11560133.256.11.1

133.129.11.1133.128.12.1101133.256.12.1

133.128.12.1133.129.11.1100133.256.12.1

133.128.10.1133.128.12.11002133.256.10.1

133.128.12.1133.128.10.11001133.256.10.1

133.129.11.1133.128.10.11560133.256.10.1

Destination
router IP address

Source router
IP address

Bandwid
th (Mbps)

Link
identifier

active monitor
IP address

133.128.10.1133.129.11.11560133.256.11.1

133.129.11.1133.128.12.1101133.256.12.1

133.128.12.1133.129.11.1100133.256.12.1

133.128.10.1133.128.12.11002133.256.10.1

133.128.12.1133.128.10.11001133.256.10.1

133.129.11.1133.128.10.11560133.256.10.1

Destination
router IP address

Source router
IP address

Bandwid
th (Mbps)

Link
identifier

active monitor
IP address

3.3 Message Communication

The three operations (load, unload and get result) are achieved by an exchange
of a request and a response using TCP/IP. MessageComm objects of a manager
and an active monitor provide the communication. Figure 7 shows a typical
example of message sequences between a manager and an active monitor. First,
a manager sends a class file of Analysis object to an active monitor (load request
at (i) of Fig. 7). After receiving the request, an active monitor starts executing
the object and sends back the response to the manager. At some time goes, the
manager sends a request to get an analysis result from the result storage of the
active monitor (get request at (ii) of Fig. 7).Get requests can be set at any time
and any times like a get request of SNMP. Finally, the manager sends an unload
request to the active monitor (unload request at (iii) of Fig. 7). When receiving
the request, the active monitor stops the execution of the Analysis object and
unloads it.



58 Toru Hasegawa et al.

Manager Active Monitor

Load request with
class file

Load response

Get request for
analysis result

Get result

Unload response

Unload request

.

.

exec
ution

(i)

(ii)

(iii)

Fig. 7. Example Communication Sequence.

4 Network Monitoring Experiments

In order to evaluate the developed active monitor network, we have performed
the two experiments. First, we have developed a DOS attacker detection appli-
cation writing Analysis and Application classes, and have had experiments over
a test bed network. Second, we have preliminarily measured the performance of
active monitor.

4.1 DOS Attacker Detection Application Development

(1) DOS Attacker Detection Problem
Recently, DOS attacks such as ICMP Flood and TCP Flood are becom-

ing a serious problem which degrades the Internet security. Usually, source IP
addresses of DOS packets are forged (spoofed); therefore, a DOS attacker who
sends DOS packets cannot be identified using source IP addresses of the packets.
Due to this, the method of detecting DOS attackers is becoming an important
problem [14] for a network monitoring system.

We have developed a DOS attacker detection application. The DOSApplica-
tion and DOSfilter classes are written. They correspond to the Application and
Analysis classes, respectively. A DOSfilter object is used to detect DOS packets.
As for DOS packets, the destination IP address is a target host of a DOS at-
tack. Source IP addresses are forged; however, usually the addresses are in some
network number specified by an IP address and an address prefix. Therefore, a
DOSfilter object detects a DOS packet by filtering captured packets with the
filter condition of the above destination IP address and the source IP network



Programmable Remote Traffic Monitoring Method 59

number. The DOSfileter class is similar to the ExAnnalysis class of section 3.1,
and returns TRUE or FALSE when a get result is requested.

The DOSApplication class detects a link from which an attacker sends DOS
packets. The algorithm of the class is explained using an experiment network
configuration shown in Fig. 8. The network consists of 5 routers and 7 LANs
(Local Area Networks). IP addresses of routers and network numbers of routers
are shown in Fig. 8. For example, IP1 is an IP address of a router, and NW1
is a network number of a LAN. The detection algorithm is designed on the
following assumptions: First, all links are tapped by active monitors. Second,
the IP network uses OSPF as a routing protocol, and it comprises a single area
of OSPF. Besides, a Topology object maintains the same topology information
as that of OSPF. Third, all links between two routers are symmetric and the
bandwidths of both directions are the same.

IP2

IP1

LAN
LAN

Attacker

LAN

LANLAN

LAN

Target Host IP3

IP4 IP5NW1

NW2 NW3

NW5

NW6

NW4

DoS
Attack

LAN

NW7

Fig. 8. Experiment Network Configuration.

(2) Simple Algorithm
Since all links are monitored, the simplest algorithm is to load DOSfileter

objects to all active monitors. Getting the results whether a DOS packet is
detected, a manager knows the links on which DOS packets are transferred,
and finally knows the nearest link to the attacker by combining the links. This
algorithm is straight forward and requires many message exchanges between a
manager and active monitors. Since the network of Fig. 8 consists of 28 links,
28 message exchanges happen.
(3) Advanced Algorithm to Reduce Message Number

We have designed an advanced algorithm using the topology information in
order to reduce the message exchange number. Since the network uses OSPF
and the bandwidths of the both direction links are the same, an IP packet takes
the same route both from a source to a destination and from a destination to a
source. Therefore, all packets sent to a target host of LAN NW1 are transferred
on routes of the SPF (Shortest Path First) tree whose route is the LAN NW1, as



60 Toru Hasegawa et al.

shown in Fig. 9. Using this tree, DOS attackers are detected using less messages
than the simple algorithm. The DOSApplication detects DOS attackers in the
following way:

IP2

IP1
IP3

IP4 IP5

NW1

NW2

NW3

NW6

NW7NW5

1st
hop

2nd
hop

3rd
hop

4th
hop

1st step

NW4

2nd step

Fig. 9. Detection Using SPF Tree.

(i) The DOSApplication object calculates the SPF tree by invoking a method of
a Topology object. Then, it calculates a maximum hop number among all routes
from LANs to LAN NW1. In Fig. 9, the maximum hop number is 4.
(ii) It calculates the half of the maximum hop number so that DOSFileter objects
are loaded to the next links to the middle routers of the SPF tree. In Fig.3, the
links of the 3rd hops are the links.
(iii) It loads DOSFilter objects to active monitors which tap the links of the
calculated hop number. It then gets the analysis results. When the DOSAppli-
cation object gets links on which DOS packets are detected, it loads DOSFilter
objects to active monitors of the next hop links to the detected links. In Fig. 9,
the link between IP3 and NW3 and that between IP3 and NW4 are the links.
This procedure is repeated until when all routes of the DOS packets are fixed.

In Fig. 9, when the 4th hop links are checked, the algorithm finishes and
detects an DOS attacker at the link between IP3 and NW3. In this example,
only 6 message exchanges happen although 28 message exchanges happen when
using the simple algorithm.

We have actually performed the experiment using the network configuration
shown in Fig. 8. The DOS attacker can be detected in about just 2 seconds.

4.2 Performance Evaluation

The performance of packet capture and filter has been evaluated in the following
way: An active monitor runs on a PC with a 1.3GHz Pentium III CPU and 512
Mbyte memory. The PC taps a FastEthernet link and a LAN tester (IXIA) sends



Programmable Remote Traffic Monitoring Method 61

packets at the fix rate changing packet sizes. The ExAnalysis object of section
3 runs and it filters the packets using source and destination IP addresses. The
result is shown in Table 2. Each column shows the packet capture speeds in the
two forms: the captured packet number per second and the capture throughput.

Table 2. Performance of Active Monitor.

10.12

2470

512

10.168.216.253.78Capture Throughput
Mbit/s

1240401061007400Capture Speed
Packets / sec

102425612864Packet Size
Bytes

10.12

2470

512

10.168.216.253.78Capture Throughput
Mbit/s

1240401061007400Capture Speed
Packets / sec

102425612864Packet Size
Bytes

5 Discussion

5.1 Usefulness of Active Monitor Network

(1) Flexibility and Programmability
The introduction of active network techniques into traffic monitors and a

network monitoring system is quite successful. The programmability of traffic
monitor is so useful that the DOS attacker detection application can be imple-
mented in just two weeks by one Java programmer. The short turn around time
of a network monitoring application development is one of the most important
advantages of active monitor networks. If the application were developed from
the scratch, it would take more than half a year because the platform devel-
opment took half a year. The good productivity is achieved by the following
aspects: First, the active monitor platform provides abundant methods for an-
alyzing captured packets such as the packet filter and the get/set of protocol
parameters. This improves the productivity of Analysis class. For example, an
ExAnalysis class is about just 80 line long. Second, the client-server style com-
munication similar to SNMP is simple, it is easy for programmers to write a
network monitoring application program. Third, Java itself provides the high
productivity.
(2) Topology Information

Topology information is quite useful for programmers to write an Applica-
tion object which analyzes a monitored network in consideration of topology.
As for the DOS attacker detection application, the topology information is suc-
cessfully used to reduce the number of links on which active monitors must
monitor. Besides, the topology information is expected to be used by many net-
work monitoring applications. For example, it will be used to calculate a network
performance on each route.



62 Toru Hasegawa et al.

(3) Performance
The performance of active monitor is not so high. However, the performance

is enough for many network monitoring applications. For example, the DOS at-
tacker detection application of this paper works correctly as long as some portion
of packets is captured. In order to improve the performance, a performance bot-
tleneck object, i.e., a Jpcap object, need be improved. As shown in Table 2, the
packet capture number per second decreases as the packet size increases. This
decrease is due to the garbage collection of JVM. Since the Jpcap object uses
more memory for a larger packet than for a smaller packet, garbage collections
more often happen for the larger packet size. Therefore, we plan to rewrite the
Jpcap object in other programming languages such as C or assembly languages.
This reduces the garbage collection times, and improves the performance.

5.2 Comparison with Related Work

(1) Traditional Traffic Monitors
So far, many traffic monitors [1,2,3,4] were developed. The traffic moni-

tors collect the statistics from captured packets. None of the monitors are pro-
grammable; in other words, our active monitor is the first programmable traffic
monitor in the literature. Besides, by writing programs, our active monitor can
provide any function provided by other traffic monitors.
(2) Active Network Management System

Many active network management systems [6,7,8,9,10] were developed. These
systems make traditional manager-agent based network management systems
programmable. The systems make an agent storing MIB information program-
mable. For example, a packet of SmartPacket [6] contains a program for detecting
equipment errors or recovering from a failure, and the program is executed on
the agent, which reduces the communication between a manger and an agent.
However, these systems just focus on intelligently handling of MIB. They do not
provide the functions for handling the traffic statistics which are not stored in
the MIB.

ANCORS [10] is an adaptable network control and reporting system which
merges network management and distributed simulation. The system provides
user-definable network monitoring capabilities. Although the analysis of moni-
tores result is programmable, the system just uses the existing traffic information
such as MIB and RMON-MIB inforamtion.

ANMOS monitoring tool [11] is the first active network management system
which focuses on network monitoring. However, this tool focuses on monitor-
ing an active network itself in order to know how an active network behaves.
Besides, it does not make traffic monitors programmable. On the contrary, our
active monitor makes a traffic monitor programmable so that network operators
can collect traffic information which could not be gotten unless parameters and
sequences of captured packets were analyzed.
(3) Active Network Platform

An Analysis program is executed every when a captured packet is received.
This mechanism is similar to capsule based active networks where a program



Programmable Remote Traffic Monitoring Method 63

in a capsule is executed when a capsule is received by an active node. PLANet
(Packet Language for Active Networks) [15], ANTS [16] and SC Engine [17] are
examples of capsule based active networks. The implementation of our active
monitor network is similar to ANTS; however, the objectives are different. The
other capsule based active networks make routers programmable; however, our
active monitor network makes traffic monitors programmable.

6 Conclusion

In order to achieve a flexible network monitoring system, we propose the intro-
duction of active network approach into traffic monitors. We have developed an
active monitor network which consists of programmable traffic monitors and a
manager. We have also developed a DOS attacker detection application by writ-
ing an analysis program and an application program. The following results are
made clear from the above developments.

– The introduction of active network approach into traffic monitors is useful to
achieve a flexible network monitoring system. The programmability of traffic
monitors makes the productivity of a network monitoring application high.
For example, the DOS attacker detection application has been developed in
two weeks.

– The introduction of topology information of a monitored IP network into a
network monitoring system is useful to make a network monitoring system
intelligent. For example. The DOS attacker detection application decreases
the message number between a manager and active monitors using a shortest
path first tree calculated from the topology information.

References

1. T. Oetiker, “Multi Router Traffic Grapher (MRTG) Homepage,”
http://www.mrtg.org/.

2. Cisco Systems Inc., “NetFlow FlowCollector Homepage,”
http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/.

3. N. Brownlee, “NeTraMet Homepage,”
http://www.auckland.ac.nz/net/NeTraMet.

4. T. Kato, et. al., “Performance Monitor for TCP/IP Traffic Analyzing Application
Level Performance,” Proceeding of ICCC’99, vol.2, pp.114-121, September 1999.

5. D. Tennenhouse, et. al., “A Survey of Active Network Research,” IEEE Comm.
Mag., vol.35, no.1, January 1997.

6. B. Schwartz, et. al, “Smart Packets for Active Networks,” Proceeding of OPE-
NARCH’99, March 1999.

7. Y. Yemini and S. da Silava, “Towards Programmable Networks,” Proceeding of
IFIF/IEEE International Workshop on Distributed Systems: Operations and Man-
agement, October 1996.

8. G. Pavlow, et. al, “The OSIMIS Platform: Making OSI Management Simple,”
Proceeding of ISINM’95, 1995.

http://www.mrtg.org/
http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc/
http://www.auckland.ac.nz/net/NeTraMet


64 Toru Hasegawa et al.

9. R. Kawamura and R. Stadler, “Active Distributed Management,” IEEE Commu-
nication Magazine, pp. 114-120, April 2000.

10. L. Ricciulli and P. Porras, “An Adaptable Network COntrol and Reporting Sys-
tem (ANCORS),” Proceeding of the 6th IFIP/IEEE International Symposium on
Integrated Network Management, May 1999.

11. M. Ott, et. al., “Looking Inside an Active Network: The ANMOSMonitoring Tool,”
Proceeding of IWAN 2000, October 2000.

12. D. Alexander, et. al., “The Switch Ware Active Network Architecture,” IEEE
Network Mag., June 1998.

13. http://www.goto.info.waseda.ac.jp/~fujii/jpcap/index.html .
14. R. Stone, “CenterTrack: An IP Overlay Network for Tracking DoS Floods,”

NANOG, October 1999.
15. M. Hicks, et. al., “PLANet: An Active Internetwork,” Proceeding of INFOCOM’99,

March 1999.
16. D. Wetherall, et. al., “ANTS: A Toolkit for Building and Dynamically Deploying

Network Protocols,” IEEE OPENARCH’98, April 1998.
17. F. Kubota, et. al., “Congestion Management based on Routing Functions over

Active Internetwork System,” Proceeding of APNOMS 2000, October 2000.

http://www.goto.info.waseda.ac.jp/~fujii/jpcap/index.html

	Introduction
	Overview of Active Monitor Network
	Programmability of Active Monitor
	Programmability of Manager
	Communication between Manager and Active Monitor
	Network Topology

	Implementation of Active Monitor Network
	Active Monitor
	Manager
	Message Communication

	Network Monitoring Experiments
	DOS Attacker Detection Application Development
	Performance Evaluation

	Discussion
	Usefulness of Active Monitor Network
	Comparison with Related Work

	Conclusion

