
Practical Network Applications on a Lightweight

Active Management Environment

Kostas G. Anagnostakis, Sotiris Ioannidis,
Stefan Miltchev, and Jonathan M. Smith

CIS Department, University of Pennsylvania
200 S. 33rd Street, Philadelphia, PA 19104, USA

{anagnost,sotiris,miltchev,jms}@dsl.cis.upenn.edu

Abstract. The main focus of active networking research so far has been
at the infrastructure level, facing the challenges of designing suitable
node operating system structures and the study of different programming
models. This has left exploration of the actual utility of active networks
to rather simple applications that have yet to exploit the full potential
of the programmable network.
In this paper we present an application-driven study of active networks,
identifying unique and practical applications that make full use of the
active infrastructure. We explore a class of applications in network moni-
toring that indicate a clear need for programmability as offered by active
networking technology.
We have built several monitoring applications on an active substrate that
is synthesized from off-the-shelf components. We demonstrate the flexi-
bility provided while showing that for certain application workloads such
a system can efficiently operate at modern backbone network speeds. Our
performance study also leads to design considerations for scaling up the
infrastructure to future network speeds.

1 Introduction

While there is generally no doubt about the increased potential and flexibility
of active networks compared to the state-of-the-art [25], adoption of this new
technology is, to date, still limited. Performance and security considerations may
have been important reasons for this, however, the lack of unique and appealing
applications is equally or possibly more important. Motived by the so far rather
dry focus on infrastructure issues, we argue for an application-driven approach.
We identify and experiment with a class of applications in the field of network
monitoring that we believe have the key properties for making active networking
arguments.

Network monitoring is an increasingly important, yet difficult and demanding
task on modern network infrastructures. As argued in [9], the scalability of the
stateless IP networks has been bought at the expense of observability, which has
in turn led to the recent study of several ways of monitoring networks in order
to support control and management functions [10,12]. Most routers offer built-
in monitoring functionality, accessible using mechanisms such as SNMP [27] or

I.W. Marshall, S. Nettles, and N. Wakamiya (Eds.): IWAN 2001, LNCS 2207, pp. 101–115, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

102 Kostas G. Anagnostakis et al.

NetFlow [7]. However, the domain of network monitoring has exposed fundamen-
tal weaknesses of these static-functionality, protocol-based, parametric designs.
User needs vary and are uncertain at design time, causing the available manage-
ment interfaces to fall short of user expectations. Additionally, tasks attractive
only to minorities of users are usually not cost effective to be integrated in
routers. Finally, in cases such as detection and prevention of “denial-of-service”
attacks, the need for timely deployment cannot be met at the current pace of
standardization.

Operational experience indicates a clear demand for a dynamically extensible
system to support network monitoring and measurement-based applications. Our
hypothesis is that allowing these applications to share a common, open and
programmable monitoring platform can be more cost-effective and efficient than
employing closed purpose-specific monitoring tools. The main idea is to allow
soft real-time processing of traffic measurement data by application modules,
as close to the information source as possible. This is in line with management
by delegation (MbD) models [11] with the key difference lying in the level of
abstraction: we argue for a traffic measurement approach, rather than using
the already diluted SNMP-based information. With respect to deployment, it is
important that for a significant number of applications the proposed system can
be introduced as a local enhancement. Of course, more wide-spread deployment
is desirable to support distributed applications such as the traffic regulation
mechanism described in this paper.

Some unique characteristics of the application domain and the system we
propose make this study both interesting and challenging. While formally be-
longing to ”management plane” functionality, our system needs to operate at
the tempo of packet forwarding. This means that on one hand, it can be devel-
oped as a separate system, without requiring modification of existing routers.
On the other, it carries some of the performance concerns associated with the
forwarding function. However, unlike packet forwarding, the need for real-time
processing is less strict. For example, extensive buffering can be used to address
transient peak demands. The task is also a good target for parallelization, which,
while being interesting as a feasibility argument, is not the focus of this paper.

In this paper we describe a proof-of-concept implementation of simple mon-
itoring applications on a programmable infrastructure. These applications are:
traffic analysis, usage accounting and traffic regulation for distributed ”denial-
of-service” attack detection and prevention. We also present a lightweight active
substrate designed to support experimentation with these applications, that is
based on off-the-shelf components. Our initial experiments demonstrate that
such an approach to active networking is indeed feasible. The flexibility pro-
vided by the system compared to its simplicity is admirable. We believe that the
general methodology as well as the specific application domain is a promising
avenue for further research.

The remainder of this paper is organized as follows. In Section 2 we present
the applications and in Section 3 the active substrate used for building these
applications. In Section 4 we discuss experiments demonstrating the feasibility

Practical Network Applications 103

and merits of our approach and studying performance issues. In Section 5 we
present related work and in Section 6 we conclude and discuss further work.

2 Applications

2.1 Traffic Regulation

The current Internet architecture offers very few protection mechanisms against
ill-behaved traffic. Especially in recent years there has been an increase in Dis-
tributed Denial of Service (DDoS) attacks [19,20] as well as flash crowd effects.
A denial of service attack occurs when a single or multiple hosts transmit large
amounts of traffic targeting a specific network node. Flash crowds occur when a
large number of users access the same server simultaneously1, overwhelming the
available resources.

The two main problems are to detect the attack source(s), despite the fact
that IP source addresses are spoofed by the attacker, and to respond, by confining
or blocking traffic from the attacking sites. Both problems are a natural fit for
an active networking approach. In fact, recent studies [26,24] essentially assume
some router programmability for implementing these schemes. Network nodes
need to obtain information from the network to reconstruct the path towards
the attacking sites. This can be done by monitoring traffic and recording the
upstream router for each packet. Sampling techniques can be used to reduce the
cost of monitoring. We show that this can be accomplished without modifying
the router functionality. In response to an attack and once the attacker has been
traced, router control commands can be initiated from our active substrate to
block or otherwise confine the attacking traffic.

An important benefit of using active networks in implementing IP packet
traceback and traffic rate limiting is the ability to adapt depending on the type
of ill behaved traffic. For example, active networks give users the flexibility of
dynamically deploying the appropriate protocol to counter a possible attack. As
new attacks are being invented it is easy to develop and deploy mechanisms to
counter them.

2.2 Traffic Analysis

While primarily a tool for Internet research, traffic analysis is also becoming im-
portant for service providers to support functions such as traffic engineering [10].
SNMP [27] and NetFlow [7] impose an a-priori specification of the granularity of
the traffic data in the form of standardized objects. This was also the main trig-
ger for the development of passive measurement systems such as OC3MON [3].
These systems passively “listen” on a network link and dump packet headers to
disk. Trace files can then be downloaded for off-line analysis. The flexibility lies
in that these systems capture the full stream of data for later processing. There
are, however, certain constraints with this approach:
1 This is also known as the Slashdot effect.

104 Kostas G. Anagnostakis et al.

– Analysis of the data has to be performed post-mortem. There is no way
to perform the measurements in real-time, unless there is “login” access to
the measurement system. This restricts the use of the system to the actual
infrastructure owner and trusted parties if real-time functionality has to be
built into the system.

– As the mismatch in growth trends between bandwidth, processing, disk speed
and disk capacity increases, it is going to be increasingly impractical to
maintain huge data-sets for post-processing. On-the-fly reduction of data by
processing may be more efficient, especially if the processing task is limited,
as is the case in the example module presented below.

The contribution of an active networking approach is that users, depending
on established trust relationships, can install modules on the monitoring system
for efficiently performing real-time traffic analysis.

We have built a simple analysis module to demonstrate the power of an ac-
tive networking solution. The goal of our module is to observe the existence of
packet trains. A packet train can be loosely defined as a set of consecutive pack-
ets belonging to the same flow as observed on a network link. This is typical,
for instance, for TCP traffic, which in its slow-start phase injects two pack-
ets for each acknowledgment received. This kind of information is not available
through the standard network management mechanisms. Also, a typical passive
measurement system requires communication of all traffic to the analysis host.
Our implementation is clearly more efficient, easy to implement, and adds min-
imal overhead to the measurement system. The module consists of about 40
lines of code (with an overhead of about 101 cycles per packet) and results in
less than 400 bytes of measurement data. Other functions, such as extracting
statistics on TCP window sizes or analyzing traffic burstiness, are easy to build.
Similar functionality is not present in existing systems.

2.3 Accounting

The task of obtaining network usage statistics per accountable entity is impor-
tant for managing an operational network. Often, this forms the basis for billing
users for network usage. Volume-based billing schemes in use today rely on Net-
Flow or SNMP-type accounting for calculating the billing scheme parameters,
usually in terms of volume per network prefix. Recently, more dynamic pricing
algorithms have been studied, especially with regard to providing differentiated
services or controlling congestion. A representative example in this category is
based on the ECN [22] mechanism as described in [16]. When the network
becomes congested, routers mark packets probabilistically, with the probability
depending on the level of congestion. Marked packets are charged a fixed amount
of currency. Users who consume more resources during times of congestion are
charged more than others. This scheme provides incentive for users to make
reasonable use of network resources during congestion.

To support ECN-based charging schemes, one must collect accounting infor-
mation per network prefix as well as marked vs. non-marked packets. This is not

Practical Network Applications 105

DDOS
detection

accounting

bpf (4)trusted core
device driver

router control

monitoring system

Loader

PKT

modules

(optical splitter/port mirroring, ...)

router

link

traffic
analysis

Fig. 1. Structure of the Active Substrate.

supported by any of the existing router accounting mechanisms: NetFlow allows
either per-ToS or per-AS or per-network accounting tables. We will demonstrate
that the implementation of this scheme based on our lightweight active substrate
is fairly simple.

3 The Lightweight Active Management Environment

The active substrate for the experiments in this paper is built entirely from
off-the-shelf components. Two reasons influenced this choice: firstly, the goal of
the paper is not to build a new active networking infrastructure and secondly,
our claim is that an active network can and should be built in an incremental
fashion. The overall architecture of our system is shown in Figure 1, and is
roughly equivalent to the structure of Switchware [2] and other active networking
prototypes. The system is built around the OpenBSD 2.8 [1] operating system.
OpenBSD provides an attractive platform for developing secure applications
because of the well-integrated security features and libraries (e.g. IPsec stack,
SSL, KeyNote, etc.). Similar implementations, however, are possible with other
operating systems or active network platforms. In the following paragraphs we
will describe the various components of our system.

Loader. The module loader is implemented as a system daemon which accepts
TCP connections for loading and controlling modules. Users need to authenticate
themselves to the active node by establishing a secure IPsec tunnel. The modules
are implemented as native code shared objects. Upon receipt of a module, the
loader can either execute it in its own virtual address space or load it inside the
operating system kernel. The decision depends on the kind of credentials the
objects use to authenticate to the loader. In our current prototype we assume
that code executing in the operating system kernel will not accidentally harm the
system. There are however a number of techniques to shield against this type
of errors, like software-based fault isolation [28] and the use of large address
spaces [29], which can be easily adopted in our active substrate.

106 Kostas G. Anagnostakis et al.

KeyNote-Version: 2

Authorizer: NET_MANAGER

Licensees: TrafficAnalysis

Conditions: (an_domain == "an_exec" && module == "capture" &&

(srcip == 158.130.6.0/24 ||

dstip == 158.130.6.0/24) /* own network */

&& snaplen == 40) /* headers only */

-> "ANONYMIZE";

Signature: "rsa-md5-hex:f00f5673"

Fig. 2. Example credential that grants ”TrafficAnalysis” capture access to the network

interface for traffic to/from 158.130.6.0, packet headers only. The packet source and

destination addresses must be anonymized.

Trusted Core. The applications that use our system require access to the pack-
ets going through the node. On UNIX this can be accomplished using the Packet
Capture library (pcap(3)) which provides wrapper functions for the Berkeley
Packet Filter (bpf(4)). We extended the bpf tap function inside the bpf(4)
device driver to process the packet and packet headers according to the privi-
leges of the application. For example, an application might be permitted access
to specific flows only, as shown in Figure 2, or be allowed to access packets head-
ers (instead of full packets) and only after the IP addresses are anonymized for
privacy (e.g. Figure 3). Traffic information can subsequently be passed on to the
applications.

Security Policy. We take a Trust Management [5] approach to mobile code
security. Trust Management is a novel approach to solving the generalized au-
thorization and security policy problem. Entities in a trust-management system
(called \principals") are identified by public keys, and may generate signed pol-
icy statements (which are similar in form to public-key certificates) that further
delegate and refine the authorization they hold. This results in an inherently
decentralized policy system: the system enforcing the policy need only consider
the relevant policies and delegation credentials, which the user needs to provide.

We have chosen to use KeyNote [4] as our trust management system. KeyNote
provides a simple notation for specifying both local policies and credentials.
Applications communicate with a “KeyNote evaluator” that interprets KeyNote
assertions and returns results to applications. A KeyNote evaluator accepts as
input a set of local policy and credential assertions, and a set of attributes, called
an “action environment,” that describes a proposed trusted action associated
with a set of public keys (the requesting principals). The KeyNote evaluator
determines whether proposed actions are consistent with local policy by applying
the assertion predicates to the action environment. In our system, we use the
action environment as the place-holder of component-specific information (such
as language constructs, resource bounds, etc.) and environment variables such

Practical Network Applications 107

policy
filter

anonymizer user filter user processing
module

PKT system-level user-level

bpf filter
language

bpf filter
language

trusted kernel
code

untrusted user
code

policy controlled user specified

Fig. 3. The Cycle of a Packet Being Processed by the System and User Code.

as time of day and node name, that are important to the policy management
function.

We use KeyNote for performing policy compliance checks and settings when
loading up the incoming object code. The KeyNote credential specifies what re-
sources will be allocated to the newly created process. Object modules that exe-
cute inside the kernel have no resource bounds. However user level processes are
assigned specific resource permissions depending on the credentials they carry.
We rely on the rlimit structure of the UNIX operating system, where limits
for CPU time, memory size, number of allowed processes, etc., are specified.
We also forbid user processes from modifying those values. We did not attempt
to make the environment totally tamperproof as that would have been beyond
the application-oriented scope of this work. However, there has been extensive
research in this field which can be easily incorporated in our system [15,14].

4 Experimental Study

A number of experiments were performed with the implementation of our system
on the test-bed shown in Figure 4. The experiments aim primarily to validate
our design and study system performance.

Our test-bed consists of 7 x86-based routers and an “edge” machine, all
running OpenBSD 2.8. Five of these machines are 1GHz Pentium III with 256MB
SDRAM, two are 400MHz Pentium III with 256MB of SDRAM (Kerkyra and
Ithaki) and one is a 166MHz Pentium with 256MB of SDRAM (Naxos). All
links in this topology are point-to-point. The core of the network (resembling
a network backbone) is comprised of 1 Gbit/s Ethernet links (3Com 3C985-SX
33MHz 64 bit PCI) and the surrounding Ethernet links are 100 Mbit/s. The edge
machine is connected with a 10 Mbit/s Ethernet to one of the backbone routers.
We used the ALTQ [6] implementation for providing the router functionality
assumed by the traffic regulation and ECN-based accounting applications.

4.1 System Demonstration

Traffic Regulation. To demonstrate the traffic regulation module we designed
the following experiment. The attack progress and system response is illustrated

108 Kostas G. Anagnostakis et al.

192.168.5.0192.168.4.0

2 192.168.6.0 1

1

2 2

1

1

192.168.7.0192.168.8.0192.168.9.0 192.168.10.0
1 1 1

2 2

1000Base-SX
100Base-T

cephalonia

lefkada zakynthos

ithaki paxoikerkyrakythira

naxos

10Base-T
12

192.168.11.0

2 2

Fig. 4. DSL Test-Bed Layout.

in Figure 5. Kythira (source) starts a TCP connection with our edge host,
Naxos (sink). We limit the flow to 10 Mbit/s using ALTQ on the source. At
times 5 sec, 15 sec and 25 sec, Kerkyra, Ithaki and Paxoi, start a UDP flood
attack to Naxos. Since the IP source addresses are forged the host under attack
(Naxos) must use a form of IP traceback to single out the offending hosts. Naxos
registers abnormal link utilization by employing a simple monitoring module
that measures overall load on the 10 Mbit/s link. Upstream router Cephalonia is
requested to start sampling packets. A second monitoring module on Cephalonia
samples the packets destined to Naxos and determines that offending packets
arrive through Zakynthos and Lefkada. Cephalonia subsequently sends the result
to Naxos. Naxos requests Zakynthos and Lefkada to start sampling and they
return Kerkyra, Ithaki and Paxoi as sources of the offending packets. Once the
offending sources are identified, Naxos asks Zakynthos and Lefkada to block
traffic from Kerkyra, Ithaki and Paxoi. As the offending traffic is blocked, TCP
traffic slowly recovers to its pre-attack levels.

Traffic Analysis. A simple traffic analysis experiment was performed with the
packet train analysis module (code is presented in Appendix A). As our testbed
does not carry real network traffic we generated traffic from host Lefkada to host
Cephalonia, using a 3 hour long IP header trace captured at the University of
Auckland 2. The module code, running on Cephalonia is shown in Appendix A
and the results of the measurements in Figure 6. Note that even a non-privileged
2 Traces and tools are available from
http://moat.nlanr.net/Traces/Kiwitraces/auck2.html.

http://moat.nlanr.net/Traces/Kiwitraces/auck2.html

Practical Network Applications 109

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

tr
af

fic
 lo

ad
 (

K
B

/s
ec

)

time (sec)

* Kerkyra starts flooding

* Ithaki starts flooding

* Paxoi starts flooding

* Naxos detects attack
* Lefkada filters

* Zakynthos filters

regular traffic
flood traffic

Fig. 5. Traffic Flood Escalation, Detection, and Filtering Events for Traffic Regulation

Experiment.

user could be allowed to install and run such a measurement module: no access to
the packet payload is needed, and the algorithm works with anonymized packets
as well. This demonstrates how such an approach can provide the technical basis
for allowing researchers to use similar modules on real network links.

Accounting. The implementation of the ECN accounting module is remarkably
simple (the module code is included in Appendix A). For each packet, the module
checks whether the CE (Congestion Experienced) bit is set in the IP header, and
calls the accounting function add_to with the appropriate table of marked or
unmarked traffic as an argument. To test this module in our experimental set-up,
we enabled ALTQ’s ECN on the 100 Mbit/s link between Ithaki and Zakynthos
(see Figure 4). We generate traffic from the hosts behind Ithaki in the following
way:

– A simulated Network A, where a mixture of TCP connections is generated
based on ttcp, with a Poisson distribution for connection arrivals and an
exponential distribution for the connection duration (in bytes).

– A simulated Network B, with a mixture of TCP connections with short-
lived bandwidth-savvy UDP streams , all using ttcp. UDP traffic is non-
congestion controlled, and this is clearly reflected in the resulting charges in
Table 1.

110 Kostas G. Anagnostakis et al.

1

10

100

1000

10000

100000

1e+06

1e+07

0 10 20 30 40 50 60 70

N
um

be
r

of
 in

st
an

ce
s

Packet train length

Packet train experiment

Fig. 6. Graphical Representation of Packet Train Distribution.

Table 1. Charges Matrix for ECN Experiment.

user marked unmarked total charge
(charged) (free) traffic

Network A 104.29 MB 2.88 GB 2.99 GB USD 52.14
Network B 283.84 MB 1.39 GB 1.67 GB USD 141.92

4.2 Performance Study

The questions that we attempt to answer with respect to performance is what
cost the applications have in terms of processing and how much and what kind
of overheads the system structure imposes. The results are summarized in Table
2. We send traffic from Zakynthos to Cephalonia and analyze performance at the
receiving monitoring system.

To measure the system overhead, we have implemented a simple module
that consumes a certain number of cycles for every packet received. We vary this
number of cycles burned and measure how many packets are dropped by bpf.
We calculate the maximum number of cycles available per packet on our system
as the maximum number of cycles before the drop rate starts to grow above 4
% .Figure 7 shows an experiment using traffic with a packet size of 1000 bytes
and a rate of 90 Mbit/s. In this experiment, performance starts to deteriorate
at around 55000 cycles.

Using 473-byte packets at 155 Mbit/s rate (about 40000 pkts/sec) the number
of cycles available is about 15000. Since Cephalonia is a 1.3 GHz P4 processor
system, the theoretical maximum number of cycles available per packet is around
30000. The large overhead is due to context switches, kernel-user space crossings,

Practical Network Applications 111

Table 2. Cost Breakdown. Numbers in rows 1 and 2 refer to a 40 kpps traffic stream,

equivalent to a 155 Mbit/s link fully utilized by 473-byte packets.

Task Cycles/packet

max. no. cycles (on 1.3Ghz P4) 31737

max. no. cycles (after system overheads) 15277 ± 1052

null module 1831 ± 89

anonymization 131 ± 8

dump to disk 3293 ± 416

ecn accounting 850 ± 43

pkttrain 101 ± 0

ddos detection 390 ± 1303

memory copies and bpf-internal overhead that is unavoidable as we rely on a
composition of off-the-shelf components. The results indicate that a specialized
system structure could improve system performance up to 100 % , but also shows
that a single, purely software-based system may not be sufficient to support
heavy workloads at higher network speeds. However, considering the application
workload (shown in Table 2) the system is still sufficiently fast to support a
fairly extensive application workload at 155 Mbit/s line rates.

2

4

6

8

10

12

14

16

18

30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000

bp
f p

ac
ke

t d
ro

p
pe

rc
en

ta
ge

processing cycles per packet

BPF performance - incoming traffic rate 90 Mbit/s

20ms dispatch - 16 bytes snap
2s dispatch - 8192 bytes snap

2s dispatch - 16 bytes snap

Fig. 7. BPF Drop Rate vs Number of Cycles Consumed by Each Packet for 1000-Byte

Packets Arriving at a Rate of 90Mbit/s.

112 Kostas G. Anagnostakis et al.

5 Related Work

Numerous system tools have been developed for network monitoring and per-
forming management functions. The first generation of a measurement tools
such as tcpdump(8) were based on the Berkeley Packet Filter [18]. bpf(4) pro-
vides operating system functionality for traffic monitoring. Users employ filters
specified in a Filter Language that execute on a �lter machine. inside the ker-
nel. oc3mon [3] is a dedicated host-based monitor for 155Mbit/s OC3 ATM
links. The host records the captured headers into files for post-processing. No
real-time functionality for packet processing is considered in the original design.
ntop(8) [8] is an end-system network monitoring tool that shares a subset of
the motives of our approach to extensibility. ntop(8) allows plugins, in forms
of shared libraries, to be developed independently from the system core. The
difference lies in that full trust in plugins is assumed and no further security-
enhancing function is build into the system. Also, there is no notion of using
the measurement data for router control and no provisions for distributed ap-
plications across the node boundaries. Windmill [17] is an extensible network
probe environment which allows loading of “experiments” on the probe, with
the purpose of analyzing protocol performance. The NIMI project [21] provides
a platform for large-scale Internet measurement, with Java and Python based
modules. NIMI only allows active measurements (i.e. handling of probe pack-
ets, in contrast to getting real traffic from the wire). The security policy and
resource control issues are addressed using standard ACL-like schemes. In the
active networking arena, ABLE [23] provides an environment for network man-
agement applications. It allows applications to monitor the network using SNMP.
Executing the SNMP applications closer to the managed elements reduces the
communication burden. However, ABLE is limited to what is exposed through
the SNMP MIBs.

6 Conclusions and Future Work

We have shown that network monitoring offers excellent soil for active networking
solutions. This is mostly due to the continuously evolving and highly diverse
nature of the monitoring applications. These characteristics impede designers
and users from predicting and agreeing on a set of functions that can satisfy the
needs of users in the long-term. If the quality of a design is judged by its ability to
absorb the next wave of demand from its users, an active networking approach, as
demonstrated in this paper, is a promising alternative to the existing designs. We
also believe that such an application-centric, incremental methodology, can lead
to experimental deployment of active networking technology while also advancing
our understanding of the most crucial issues in the field.

To validate our claims, we have built an active substrate, based on off-the-
shelf system components, and developed a set of practical applications. Our
study establishes evidence on the feasibility of providing and the utility from
exploiting a programmable monitoring infrastructure. We show that, from a

Practical Network Applications 113

performance perspective, our implementation is able to support a reasonable
application workload at speeds of modern networks.

Developing practical network applications has given us insight on several
aspects to explore further. For instance, our current implementation can control
host-based OpenBSD routers for demonstration purposes. Extending our system
to perform active router control functions involving routers is possible on the
same architectural principles, although it may require different mechanisms for
obtaining access to the actual network traffic. Furthermore, our performance
study has indicated that a purely software-based approach can be much more
efficient than the specific system structure used for our experiments. The design
of a purpose-specific system can improve performance by 100 % and becomes an
interesting topic for further work.

Departing from a purely software approach, we also see tremendous potential
in the use of network processors such as [13]. Our system can be improved by
moving the filtering function as well as some of the processing of the modules
to the network processor micro-engines. Adding or reserving processing capabil-
ities on router interfaces for monitoring purposes and exposing them for pro-
gramming can also be highly useful for certain limited workloads. A detailed
study and characterization of potential application workloads may, in turn, re-
veal diverging requirements on the design of network processors. We expect that
monitoring workloads can be both processing and memory intensive which can
be different from forwarding-type functions considered in the current network
processor designs.

Finally, except for network processors, we would like to study other dis-
tributed designs. Due to the fact that the application workload will consist of
several independent modules, it can naturally be distributed among different
processors. The applicability of our approach can hereby be extended to higher
network speeds and more intensive workloads.

Acknowledgements

This work was partially supported by DARPA under Contracts F39502-99-1-
0512-MOD P0001 and N66001-96-C-852 and OSD/ONR CIP/SW URI through
ONR Grant N00014-01-1-0795. We would like to thank Michael Hicks and Jon
Moore for fruitful discussions, and the anonymous reviewers for their valuable
comments that helped improve the quality of this paper.

References

1. The OpenBSD Operating System. http://www.openbsd.org/.

2. D. Scott Alexander, Michael W. Hicks, Pankaj Kakkar, Angelos D. Keromytis,
Marianne Shaw, Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles, and
Jonathan M. Smith. The SwitchWare Active Network Implementation. In Pro-
ceedings of the 1998 ACM SIGPLAN Workshop on ML, 1998.

http://www.openbsd.org/

114 Kostas G. Anagnostakis et al.

3. Joel Apisdorf, k Claffy, Kevin Thompson, and Rick Wilder. OC3MON: Flexible,
Affordable, High Performance Statistics Collection. In Proceedings of the 1996
LISA X Conference, 1996.

4. M. Blaze, J. Feigenbaum, J. Ioannidis, and A.D. Keromytis. The KeyNote Trust
Management System Version 2. Internet RFC 2704, September 1999.

5. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In Proc.
of the 17th Symposium on Security and Privacy, pages 164–173, 1996.

6. Kenjiro Cho. A Framework for Alternate Queueing: Towards Traffic Management
by PC-UNIX Based Routers. In Proceedings of USENIX 1998 Annual Technical
Conference, June 1998.

7. Cisco Corporation. NetFlow services and applications (white paper),
http://www.cisco.com/warp/public/cc/pd/iosw/ioft/netflct/tech/napps -

wp.htm, 2000.
8. Luca Deri and Stefano Suin. Effective Traffic Measurement using ntop. IEEE

Communications Magazine, pages 2–8, May 2000.
9. Nick Duffield and Matthias Grosslauer. Trajectory sampling for direct traffic ob-

servation. In Proc. ACM SIGCOMM 2000 Conference. August 2000.
10. Chuck Fraleigh, Christophe Diot, Bryan Lyles, Sue Moon, Philippe Owezarski,

Dina Papagiannaki, and Fouad Tobagi. Design and Deployment of a Passive Mon-
itoring Infrastructure. In PAM 2001 Workshop, April 2001.

11. G. Goldszmidt and Y. Yemini. Distributed management by delegation. In Proc.
of the 15th International Conference on Distributed Computing Systems, pages
333–340, 1995.

12. Matthias Grossglauser and David Tse. Measurement-based admission control. In
Proc. ACM SIGCOMM’97 Conference. August 1997.

13. Intel Corporation. Intel IXP1200 Network Processor (white paper),
http://developer.intel.com/design/network/products/npfamily/

ixp1200.html, 2000.
14. Sotiris Ioannidis and Steven M. Bellovin. Sub-Operating Systems: A New Ap-

proach to Application Security. Technical Report MS-CIS-01-06, University of
Pennsylvania, February 2000.

15. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and
J. Hennessy. The flash multiprocessor. In Proc. 21-th International Symposium on
Comp. Arch., pages 302–313, Chicago, IL, April 1994.

16. Koenraad Laevens, Peter Key, and Derek McAuley. An ECN-based end-to-end
congestion-control framework: experiments and evaluation. Technical report, Mi-
crosoft Research, TR MSR-TR-2000-104, October 2000.

17. G. Robert Malan and Farnam Jahanian. An Extensible Probe Architecture for
Network Protocol Performance Measurement. In ACM SIGCOMM’98, 1998.

18. Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Architec-
ture for User-Level Packet Capture. In Proceedings of the Winter 1993 USENIX
Conference, pages 259–270, January 1993.

19. CERT Web Pages. CERT Advisory CA-1996-21: TCP SYN Flooding and IP
Spoofing Attacks. http://www.cert.org/advisories/CA-1996-21.html, Septem-
ber 1996.

20. CERT Web Pages. CERT Advisory CA-1998.01 smurf IP Denial-of-Service
Attacks. http://www.cert.org/advisories/CA-1998.01.smurf.html , January
1998.

21. V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An Architecture for Large-Scale
Internet Measurement. IEEE Communications Magazine, 1998.

http://www.cisco.com/warp/public/cc/pd/iosw/ioft/netflct/tech/napps
http://developer.intel.com/design/network/products/npfamily/
http://www.cert.org/advisories/CA-1996-21.html
http://www.cert.org/advisories/CA-1998.01.smurf.html

Practical Network Applications 115

22. K.K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Notifi-
cation (ECN) to IP. Technical report, RFC 2481, January 1999.

23. Danny Raz and Yuval Shavitt. An active network approach for efficient network
management. In IWAN’99, LNCS 1653, pages 220–231, Berlin, Germany, 1999.

24. S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Support
for IP Traceback. In Proceedings of ACM SIGCOMM 2000, August 2000.

25. J.M. Smith, K. Kalvert, S. Murphy, H. Orman, and L. Peterson. Activating net-
works: a progress report. IEEE Computer, 32(4), April 1999.

26. Dawn Song and Adrian Perrig. Advanced and authenticated techniques for ip
traceback. In Proceedings of IEEE INFOCOM 2001, April 2001.

27. W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison Wesley,
3rd edition, 1999.

28. Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Effi-
cient Software–Based Fault Isolation. In Proceedings of the 14th ACM Symposium
on Operating Systems Principles, pages 203–216, December 1993.

29. Curtis Yarvin, Richard Bukowski, and Thomas Anderson. Anonymous rpc: Low-
latency protection in a 64-bit address space. In Proceedings of 1993 Summer
USENIX Conference, June 1993.

Appendix A - Module Code

Packet Train Module Code:

void foolet_pkt(u_char *myparams, void *pcaphdr, u_char *pkt)
{

struct ip *iphdr = (struct ip *) (pkt + 14);
static struct in_addr tr_src, tr_dst;

if ((iphdr->ip_src.s_addr == tr_src.s_addr) &&
(iphdr->ip_dst.s_addr == tr_dst.s_addr))

train++;
else {

pktstats[train] += train; train = 1;
tr_src = iphdr->ip_src;
tr_dst = iphdr->ip_dst;

}
}

ECN Accounting Module Code:

void foolet_pkt(u_char *myparams, void *pcaphdr, u_char *pkt)
{

struct ip *iphdr = (struct ip *) (pkt + 14);

if (iphdr->ip_tos & IPTOS_CE)
add_to(marked_tbl, iphdr);

else
add_to(unmarked_tbl, iphdr);

}

	Introduction
	Applications
	Traffic Regulation
	Traffic Analysis
	Accounting

	The Lightweight Active Management Environment
	Experimental Study
	System Demonstration
	Performance Study

	Related Work
	Conclusions and Future Work

