Adaptive Stream Multicast Based on IP Unicast
and Dynamic Commercial Attachment Mechanism:
An Active Network Implementation

Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

NTT Network Innovation Labs. Yokosuka, Kanagawa, Japan
{tanizo,miyazaki,nrt}@exa.onlab.ntt.co.jp

Abstract. This paper describes an adaptive [P-unicast-based multicast
protocol that dynamically constructs a multicast tree based only on re-
quest packets sent by clients. Since the protocol is simple but flexible and
does not require any IP multicast addresses or special multicast mech-
anisms, unlike the IP multicast protocol, it is scalable and suitable for
personal stream broadcasting and related services. An application that
dynamically attaches advertisements to multicasted streams is also pre-
sented. The application attaches advertisements to the streams at active
nodes instead of the server so it can deliver advertisements tailored to
the individual recipient, according to his/her interests and/or location.
An algorithm that minimizes the attachment cost over the corresponding
multicast tree is developed. The multicast and advertisement attachment
mechanisms are implemented using our own active network environment,
and their validity is confirmed.

1 Introduction

The world wide web (WWW) lets users send contents to unspecified recipi-
ents and streaming data such as MPEG2 video is now larger percentage of the
contents being sent. However, IP-unicast consumes too much bandwidth when
delivering streaming data.

IP-multicast is the most popular mechanism for multicasting to recipients
located over a wide area. Many multicast routing protocols [6} [7, [0 1] for TP-
multicast have been proposed and are being investigated for stardardization at
IETF. However, in order to use IP-multicast, we need special IP addresses, called
IP-multicast addresses, to specify the multicast groups. This makes it difficult
for individuals to multicast streams since it is necessary to obtain a unique IP-
multicast address whenever IP-multicasting is desired. Furthermore, all routers
need to be able to route IP-multicast packets.

In the source-specific multicast protocol [3], each multicast group is repre-
sented by its server (source) address and a source-specific multicast address,
which has to be defined by the standard. Thus, the multicast group can be
uniquely specified since the server address is unique. However, all routers still
need to recognize IP-multicast addresses.

I.W. Marshall, S. Nettles, and N. Wakamiya (Eds.): IWAN 2001, LNCS 2207, pp. 116-[133] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Adaptive Stream Multicast Based on IP Unicast 117

Recently proposed IP-unicast-based multicast protocols use the active net-
work technology, [13| [12]. The uniqueness of each multicast group is naturally
guaranteed since the group is specified by its server address. This solves the
problem encountered when individuals start to deliver streaming data. While the
branch points of multicast trees need to be active nodes, it is not necessary to
modify legacy nodes, i.e,. add special mechanisms, when introducing active nodes
to existing networks, since the protocols use only IP-unicast packets. This makes
it easy to use the multicast mechanism in a network composed of both active and
legacy nodes. The protocol in [12] is so simple that it seems to be scalable. How-
ever, it cannot dynamically move branch points when IP-unicast routing paths
are changed. The protocol in [I3] constructs forward-path-based shortest path
trees for high-quality delivery of streaming data. In addition, the protocol can
dynamically change branch points by using “ephemeral state probes”. However,
the server and clients need to exchange many packets to gather information on
network topology and to negotiate which branch point should be moved. While
some heuristics to reduce such packets were given, the scalability of the protocol
would be limited to some extent.

We introduce here a new IP-unicast-based multicast mechanism that dy-
namically constructs a multicast tree by sharing common links among unicast
(reverse) paths from clients to a server. The communication realized by the tree
still appears to be unicast for each server-client pair. Thus servers and clients
do not have to support a special mechanism for multicast. Our tree construc-
tion is based only on a hierarchical keep-alive mechanism, i.e., request packets
are periodically sent to the server. The mechanism dynamically reconstructs the
tree so that it prevents particular active nodes from being overloaded and can
optimize the tree against changes in IP-unicast routing paths. Furthermore, this
dynamic reconstruction naturally supports the mobility of servers and clients.
The keep-alive mechanism is so simple that it is very scalable. When adopt-
ing the hierarchical keep-alive mechanism, one of the most important issues is
how to determine time-out. We provide an algorithm that dynamically changes
time-out depending on the tree topology in use.

We introduce here an algorithm for attaching advertisements to multicas-
ted streams at active nodes that minimizes the total attachment cost over the
corresponding multicast tree. By using the algorithm, each recipient can receive
streams with suitable personalized advertisements. From a commercial point of
view, this algorithm makes our multicast mechanism more attractive. An anal-
ogy is drawn to the advertisement banners on private WWW pages. A recent
trend is to customize advertisements to suit each viewer since this amplifies their
effectiveness. However, it is difficult to customize advertisements at the server
(root) of a multicast tree, since the server has to manage the advertisements
sent to all clients. Advertising normally uses a small data set repeatedly. Thus,
a reasonable approach is to dynamically load the advertisement data into active
nodes and attach the advertisements that meet the preference of each recipi-
ent at active nodes. In fact, active networks have been shown to be a desirable
approach to adding extra functions to multicast mechanisms [4] 2, [1].

118 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

We implemented our multicast mechanism with the advertisement attach-
ment function within our active network environment.

Section 2] describes our multicast mechanism while Section [3] defines two cost
models and gives an algorithm for each of them. Section @ shows our implemen-
tation; Section [l provides a brief conclusion.

2 Multicast Using IP-Unicast Addresses

We present the protocol of our multicast mechanism and then describe its char-
acteristics of load balancing and dynamic reconstruction. Next we consider how
to implement the keep-alive mechanism used in the protocol.

2.1 Protocol

Clients who want to receive multicast data send a “join” packet containing the
pair of the server address and port as its destination. The legacy nodes on the
path between active nodes simply forward multicast packets according to their
routing tables since the packets are just [P-unicast packets. When a join packet
arrives at an active node on the path between the source and the destination
(server), the source address written in the packet is registered with the multicast
routing table at the node if the table exists; otherwise the table for the server
is created before registration, and the node sends the server the join packet
with its address as the source in order to join the multicast tree of the server.
This joining operation propagates from the client through intermediate nodes
until the join packet reaches the server or a node that already has the table.
The tables determine to which client the multicast data from the server is to
be delivered. From the above, it is clear that delivery follows the reverse of the
unicast path from the client to the server. The reverse-paths between clients
and the server are bundled as much as possible by the active nodes on the
paths. Clearly, our multicast protocol can work even if the reverse-paths are
different from the unicast paths from the server to clients, say, the forward-
paths. While, in general, forward-paths give higher stream delivery quality than
reverse-paths, forward-path-based tree construction often results in complicated
or non-adaptable protocols. Our main goal is a scalable and adaptable protocol,
which lets us adopt reverse-path based tree construction.

Another simple but key feature of our multicast tree construction is its keep-
alive mechanism. FEach client continually sends join packets while it wants to
receive multicast data. The parentﬂ of the client sends multicast data if a join
packet from the client arrives within some interval. In other words, a client that
stops sending join packets expires and no multicast data is delivered to the
client. The parent node also continues to send join packets to the server of the

! Following the usual terminology of a tree, for each node (including the server and
clients) of a multicast tree, we refer to the server-side and client-side neighbor(s)
as, respectively, the parent and the children of the node. Other related terms like
ancestors or descendants will also be used without definitions.

Adaptive Stream Multicast Based on IP Unicast 119

Clients

Fig. 1. Client 7 joins when node 9 cannot accommodate any more children.

tree, while it has at least one child that remains active. The same keep-alive
mechanism works between the node and its parent. In this way, the keep-alive
mechanism starts from clients and passes through at each parent and child pair.

2.2 Load Balancing

Consider the tree in Figure[ll The topmost node is a server and the tree with the
server as its root has 3 active nodes (numbered 8 to 10) and 6 clients (numbered
1 to 6). Clients 1 to 6 are already members of the tree. Client 7 now sends a join
packet to the server. Here we assume that nodes 9 and 10 can accommodate at
most three and four children, respectively. Node 9 has a multicast routing table
since it is already a node of the tree. However, the join packet from client 7 is
forwarded by node 9 toward the server only if the link to node 10 has sufficient
bandwidth, since node 9 has already three children. The join packet arrives at
node 10 and client 7 is registered in node 10’s table. The resulting tree is shown in
Figure[2l This is a natural extension of the basic protocol and it accommodates
as many clients as possible without over-burdening active nodes.

2.3 Dynamic Reconstruction of Multicast Trees

In Figure], assume that client 5 stops sending join packets. This causes client
5 to expire at node 9. Node 9 can now accommodate one more child. Thus,
when the first join packet from client 7 arrives at node 9 after the expiration of
client 5, client 7 is registered at node 9’s table as shown in Figure Bl Note that
client 7 continually sends join packets to stay alive. The join packet from client
7 is no longer forwarded by node 9 toward the server. This leads to the expira-
tion of client 7 at node 10. In this way, the keep-alive mechanism dynamically
reconstructs the tree so as to minimize traffic.

120 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

Clients

Fig. 2. Tree after client 7 joins.

Clients

Fig. 3. Tree after client 5 stops sending join packets and expires.

This dynamic reconstruction is effective especially when clients are mobile
hosts. In Figure @, client 3 moves and its neighbor changes from node 10 to node
8. Client 3 is then registered at node 8 and expires at node 10.

Another reconstruction is triggered by the movement of the server as is pos-
sible when the server is a mobile host such as a palm-top computer with a small
video camera. If the network has a platform to support IP-unicast to mobile
hosts, say, the mobile-IP framework [9], the keep-alive mechanism reconstructs
the tree as follows. As in Figure [l the server moves and its neighboring active
node changes from node 10 to 11. The join packets from clients are routed for the
new location of the server by the mobile-IP framework, since the join packet is

Adaptive Stream Multicast Based on IP Unicast 121

Clients

Fig. 4. Tree after client 3 moves.

an P-unicast packet with the server address as its destination. Here we assume
that node 11 comes to lie on the path from nodes 3, 8 and 9 to the server, and
that node 10 is not on the path. As a result, nodes 3, 8 and 9 are registered
at node 11, and node 11 sends a join packet to the server. Node 10 may also
be registered at node 11 since it may send a join packet to the server, when we
assume that node 11 is on the path from node 10 to the server. At node 10,
nodes 3, 8 and 9 expire after a moment since the join packets from nodes 3, 8
and 9 do not reach 10 any more. Node 10 then stops sending join packets to the
server and expires at node 11.

During tree reconstruction, multiple packets carrying the same data may
arrive until the old parent-child relationships disappear. In Figure Bl nodes 9
and 10 may send redundant packets to client 6. In Figure [nodes 10 and 11
may send the redundant packets to nodes 3, 8 and 9. However, these packets can
be discarded by checking the time-stamp and sequence number assigned at the
server following, say, RTP (Real-Time Transport Protocol) [8].

2.4 Expiration Time

The keep-alive mechanism must not allow a parent to expire before all of its
children. A simple way of accomplishing this is to use a timer at each node:
each node periodically sends a join packet to the server if there is at least one
child that is active. However, to invocate packet sending by using a timer may so
badly load resources that it may delay other processes like data packet delivery.

Another way of implementing the keep-alive mechanism is for each node to
send a join packet (if needed)only when the node receives a join packet. In other
words, the sending operation is performed as the result of evaluating an active
code in a join packet. However, if each active node sends a join packet every
time it receives a join packet, the server may receive more join packets than it
can process.

122 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

Move! Q

Server

Clients

Fig. 5. Tree reconstruction when the server moves.

We now consider when a node should send a join packet and how to set the
expiration time interval. Assume that all clients send a join packet periodically
at interval D. Each node has a variable 7', which is the time when the last join
packet was sent. When the node receives a join packet, it compares the current
time o and T. If (Thow — 1) > D, it sends a join packet.

Before analyzing the above algorithm, we define the height of a node as the
number of links of the longest unicast paths from clients of its descendants to
the node. Denote the maximum interval between join packets being sent and
received at a node with height i by Ds(h) and D,.(h), respectively.

If we assume that there is no link and processing delay jitter, i.e., D,.(h) =
Dy(h — 1), it can be proved by induction that

D,(h) < hx D.

Assume that a node with height h — 1 receives a join packet from a child just
before time D has passed since the last time a join packet was sent, and the node
does not receive join packets until receiving the next join packet from the child.
This case maximizes Ds(h—1). Thus, we have D,.(h) = Ds(h—1) < D+D,(h—1).
Clearly, D,(1) = D.

If we cannot ignore jitter, we can evaluate D,.(h) by modifying the above
slightly. Let €; and €2 be the maximum increase of the link delay and the pro-
cessing delay, respectively. D,.(h) < Dgs(h—1)+ €1 and Ds(h) < D+ D,.(h) + €.
Thus, we have

Dr(h) <hx (D—|- €1+ 62)

since D,.(1) < D+ ¢; + €3.
In a reliable network in which packets are seldom lost, a straightforward
way of setting the expiration time interval is to set D,.(h*) as the interval at all

Adaptive Stream Multicast Based on IP Unicast 123

nodes, where h* is the height of the server. However, D,.(h*) is too long for nodes
whose height is less than A*. This may result in consuming bandwidth wastefully,
since an active node does not stop sending the streaming data to its children
until they expire. A solution to this problem is for each node to dynamically set
D,.(h) as the interval for a child with height h — 1. The node knows the height
of its children in a dynamic-programming way by using join packets as follows.
Clients write height 0 in the join packets they send. Active nodes choose the
maximum value of the heights written in join packets from their children and
write the value plus 1 in the join packet they send. Thus, an active node can
know the height of its children from the join packets they send. This dynamic
way of setting the expiration time interval ensures that the keep-alive-based tree
construction remains scalable.

The above procedure can be applied to computing other information such as
the number of recipients. The preference vector described in the next section is
one such type of information.

3 Attaching Advertisements Customized for Each Client

This section describes an algorithm that attaches advertisements that suit the
preference of each client.

Each client (user) chooses its favorite categories from n categories of adver-
tisements (i.e. sports, cooking, travel, etc.) B Without loss of generality, we can
assume that all intermediate nodes can be branch points, i.e., active nodes, since
we can think of a unicast path between neighboring active nodes as being a link
even if there are legacy nodes between the active nodes.

Each active node on the path between the server and each client can attach
an advertisement to the stream coming from the parent if no advertisement is
attached to the stream; otherwise it can replace/delete the advertisement. This
attachment/replacement/deletion operation can be done for each child indepen-
dent of the other children.

For a network composed of such active nodes, we propose algorithms that
attach an advertisement consistent with the preference of each client and mini-
mize the total attachment cost over the tree under the two cost models defined
below.

3.1 Binary Cost Model
We describe an algorithm based on the following cost model.

Definition 1 (Binary Cost Model). It costs an active node 0 to forward the
stream coming from its parent to a child, and 1 to attach an advertisement to the
stream or replace/delete the advertisement attached by one of its ancestors (and

2 Each user does not need to explicitly choose the categories. Such choice can be done
automatically by software that extracts the preference of users from their access
history.

124 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

then send the resulting stream to a child). The active node is charged the cost
for each child. In other words, the cost of the active node is the sum of the at-
tachment/replacement/deletion costs for all its children. The cost of a multicast
tree is the sum of the costs of all active nodes in the tree.

If an active node with m children forwards the stream to « of the children and at-
taches/replaces/deletes/ advertisements for m —x remaining children, the cost of
the node is m — x. Therefore, minimizing the cost of a multicast tree is equivalent
to minimizing the number of advertisement attachment/replacement/deletion
operations that occur in the multicast tree.

Algorithm. Our algorithm has two phases; request and delivery. In the re-
quest phase, information on the clients’ favorite advertisement categories (or ad-
categories) is propagated to the active nodes on the path to the server. Based on
the information, each active node decides which operations should be performed
and which ad-category should be used. The above decision is done so that each
client can receive streams having the advertisement of its favorite ad-category
and the cost of the multicast tree is minimized. If two or more advertisements
belong to the same ad-category, one of them is selected in an arbitrary way. In
the following, we will use ‘advertisement’ and ‘ad-category’ interchangeably. The
delivery phase performs the operation decided at each node.

The details of the request phase are as follows.

Each client sends information on its favorite ad-categories expressed by a
preference vector (defined below) to its parent. Each active node computes its
favorite ad-categories from the preference vectors sent by its children, and sends
the preference vector expressing the ad-categories to its parent.

Definition 2 (Preference Vector). For the number n of ad-categories, a
preference vector is an m binary-valued element vector (f1, fa,..., fn) (fi €
{0,1},4 = 1,2,...n) such that f; = 1 if the ith ad-category is desired, f; = 0
otherwise.

If no advertisement is attached, we still regard it as one ad-category, say, the first
ad—categoryﬁ. Thus, there are two choices at a node, replacement and forwarding.

Each active node computes a new preference vector that will be sent to its
parent by (1) summing up the preference vectors of all children, (2) choosing one
or more elements having maximum values, and (3) setting 1 on the summation’s
maximal elements of the new vector and 0 on the other elements. Note that
multiple elements may be 1 if there are two or more maximal elements.

For example, consider a node with two children as shown in Figure[6l The two
preference vectors from the children are (0,1,0) and (0,1, 1). Preference vector
(0,1,0) is sent to the parent of the node, since the sum of the two vectors is
(0,2,1).

3 Note that the first element is always 0 if clients are prohibited from requesting the
first ad-category (this is a necessary condition from a commercial point of view).

Adaptive Stream Multicast Based on IP Unicast 125

Parent
(0’ 1 ,0)
(0,1,0) /Q \(0,1 1)
First child Second child

Fig. 6. Preference Vectors into and out of an Active Node.

The node also creates or updates a table used in the delivery phase from the
received preference vectors. This table indicates which advertisements the node
should replace. This table is called the delivery table. For each child sending a
preference vector F, if the incoming stream has an advertisement for the ele-
ment with value 1 in F, then the forward operation is performed; Otherwise the
advertisement is replaced with one of the advertisements for the elements (and
the resulting stream is sent to the child).

It is convenient to express the table as an n X m matrix. Element (4, j) of the
table expresses the advertisement with which the advertisement of the incoming
streaming data is replaced in order to send the resulting stream to the jth child,
when the advertisement of the incoming stream belongs to the ith advertisement.
Hence, the table created at the node in Figure Blis

22013
2 2 ,
2 3

where its children are numbered from left to right@. For example, if the streaming
data with the first advertisement enters the node in Figure[@ the first row of the
above table indicates that the advertisement should be replaced with the second
one for sending the resulting data to the first child, and it should be replaced
with the second or third one for the second child.

We describe the behavior of the request phase on a multicast tree using
Figure [l Assume that there are three ad-categories. Here, as mentioned before,
if no advertisement is attached it is regarded as the first ad-category. In Figure[7]
clients 5 and 7 are interested in ad-category 2, and client 6 in ad-category 3. By
the definition of preference vectors, a client who is interested in the second ad-
category sends preference vector (0,1,0) to its parent, and a client who likes
the third ad-category sends (0,0,1). Active node 3 sends (0,1, 0) to active node

4 In the rest of this paper, we adopt the same rule for numbering children.

126 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

Server

0,1,0) T

O active node

©.L.0) client

(0, ly% 1,1)
(0,1,0) 0,0,/ \(O Lo

pref.—2 pref.=3 pref._2

Fig. 7. Request Phase of the Binary Cost Model.

2, active node 4 sends (0, 1,1) to active node 2, active node 2 sends (0,1, 0) to
active node 1, and active node 1 sends (0, 1,0) to the server. At this time, the
tables created at active nodes 1, 2, 3 and 4 are, respectively,

2 2 20r3 2 32
21,02 2 |.l2].[32
2 2 3 2 32

The delivery phase begins when when preference vectors arrive at the server.

When the server does not have the advertisement function, it regards the
preference vectors as just requests for the streaming data it has, and sends the
streaming data without any advertisement to its children, i.e., the sources of the
requests. When the server can attach advertisements, it sends to each child the
streaming data with the advertisement for one of the preference vector elements
with value 1.

The streaming data is multicasted with advertisement replacement opera-
tions being performed at each node according to the delivery table. Figure
shows advertisement replacement. In Figure Bl the number written in each de-
livery packet expresses the category of the advertisement carried by the packet;
the delivery packets are those that carry streaming data with advertisements
in the delivery phase. This example assumes that the server does not have the
advertisement attachment function, i.e., the server always sends the streaming
data with the first ad-category.

The above discussion does not consider the difference in the arrival times
of the preference vectors. However, it is unlikely that all preference vectors will
arrive at the same time. Another problem is that clients may join or leave the
multicast tree at any time. This may change the preference vector to be sent. Yet

Adaptive Stream Multicast Based on IP Unicast 127

O active node

client

delivery packet

with the ith advertisement

SN

l
5 6 7
pref.=2 pref.=3 pref.=2

Fig. 8. Delivery Phase of the Binary Cost Model.

another problem is that some clients in the tree may change their favorite ad-
categories while receiving the stream. To solve these problems, each node records
the preference vector of each child, computes a new preference vector from the
recorded vectors, and sends the computed vector to its parent at the time some
event occurs, i.e., when a new client joins the tree as a child of the node, when
some child leaves the tree, or when the preference vector of a child changes.
Note that clients need to send preference vectors when changing their favorite
ad-categories as well as when joining the tree. It depends on implementation as to
when to check whether the above events have occurred or not. A straightforward
way is to check periodically by using timers built in the active nodes, as the case
of the keep-alive mechanism in Section 2:4] However, using timers often delays
other processes. In our implementation, checking is triggered by the arrival of
preference vectors.

In the transitional intervals during which delivery tables are being updated,
the advertisement of the incoming streaming data may ‘contradict’ the preference
vector that was sent last. However, clients can receive the streaming data with
their favorite advertisement provided the table at their parents is updated.

The following theorem guarantees the optimality of our algorithm over stable
(i-e. non-transitional) intervals. The theorem can be proved by using inductively
the following fact: each active node replaces advertisements in order to mini-
mize the number of advertisement replacements and so minimize the cost of the
subtree with the active node as its root.

Theorem 1. For a given multicast tree, our algorithm minimizes the cost of the
tree under the binary cost model over stable intervals.

128 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

C) delivery packet

Q active node

Fig. 9. General Cost Model.

3.2 General Cost Model

In this section, we define the general cost model and generalize an algorithm for
minimizing the advertisement attachment cost over a multicast tree under the
cost model.

Definition 3 (General Cost Model). For each active node k, a cost function
(i, a1, ..., am) for advertisement replacement exists where m is the number of
children of k, i is the category of the advertisement in the incoming streaming
data, and aj (j = 1,2,...m) is the category of the advertisement with which the
advertisement of the incoming data is replaced before being sent to the jth child.
The cost of active node k is the value computed by gi(i, a1, ..., am), and the cost
of a multicast tree is the sum of all active nodes in the tree.

In the above definition, we assume that advertisements of the same category can
be regarded as equivalent to each other in terms of the cost function. If not, we
divide a category into sub-categories so that we can continue to use the above
assumption. We use advertisement and ad-category interchangeably as in the
previous section.

Algorithm. Our algorithm has the request and delivery phases. In the request
phase, each node (and client) k sends to its parent P(k) a cost vector V}, defined
below and a delivery table is created at each node. The table has the same
meaning as in the binary cost model. The delivery phase acts in the same way
as in the binary cost model. In the following, we focus on the request phase.

Definition 4 (Cost Vector). For the number n of ad-categories, a cost vector
that node k sends to its parent is an n-dimensional vector Vi, = (vF vk, ..., vF),
where vF is the minimum cost of the subtree T(k) with root k that is attainable
when k receives the streaming data with the ith ad-category. The cost vector
sent by each client has value 0 at the elements for its favorite ad-categories and

infinity, denoted by ‘inf’, at the other elements.

Adaptive Stream Multicast Based on IP Unicast 129

For example, a cost vector sent by a client who wants to receive the fourth
ad-category is (inf, inf, inf, 0, inf, ..., inf). The first ad-category means that no ad-
vertisement is attached as in the previous section. Hence, the vectors from clients
have ‘inf’ at the first element.

Each node k computes v¥ (i = 1,2,...,n) from the cost vectors sent by its
children and cost function g (i, a1, ..., am) as follows.

If c¢(k,j) is the jth child of k, the cost vector from the jth child of k
is Vogjy) = (vf(k’J),vg(k’j),~-~ vfl(’w)). Hence, vggk’J) is the minimum cost of
T(c(k,7)) when k sends c(k, j) the streaming data with the a;th ad-category.
Therefore, the minimum cost of T'(k) when k receives the streaming data with
the ith ad-category and, for each j, sends the jth child the data with the a;th

(&:m) This leads to:

m

)

ad-category, is given by gx(i,a1,...,am) + Ufl(lk’l) ERIP 54

m
oF = min }{gk(i,al,...,am) +Zv§§k’j)}.
) s j:l

j=1,2,...m

By computing this for each 4, we obtain Vi = (vF,v5, ... vF).

Uy

Delivery tables are created/updated during the computation of Vi such
that the ith row of the table is (a1, as,...,am,) which gives v¥ for each i (i =
1,2,...m). By referring to the table, the delivery phase replaces advertisements
at each node k so that the cost of T'(k) is minimized. Such operation is per-
formed recursively from the root (server) to leaves (clients). Thus we have
the following theorem.

Theorem 2. For a given multicast tree, our algorithm minimizes the cost of the
tree under the general cost model over stable intervals.

If, for an over-loaded node k, we define the cost function of £ so that the function
gives relatively large values for replacement operations, the forwarding opera-
tion is likely at node k. In this way, the load-balancing of active nodes can be
accomplished by dynamically updating the cost functions according to the load
of node k. The algorithm can also control the traffic through each link. If the link
from P(k) to node k is crowded, the algorithm can reduce the traffic of the link
by deleting the advertisement at P(k). This is accomplished by updating the
cost function of k£ so that it gives relatively large values when the advertisement
in the incoming stream does NOT belong to the first ad-category.

3.3 Applications

It is simple to modify the above algorithms so that information from the server
can be used to force the selection of one of multiple advertisements in the same
ad-category. Examples of the information from the server include the number of
recipients or the kind of movie. By inserting the information into each delivery
packet at the server, active nodes can be directed to choose the most appropriate
advertisement.

130 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

Table 1. An Example of a Vector Table.

child address|preference vector|arrival time
10.27.124.5 01010010 20:19:18
10.27.124.7 01001000 20:19:15
10.27.124.1 00100000 20:19:20

Table 2. Functions and Source/Destination Addresses of Request/Deliver Pack-
ets.

Packet name |[Source addr.|Destination addr. Function
Request packet|| Client or Server Join the multicast tree,
Active node Keep alive, and

Carry a preference vector

Delivery packet Server Client or Carry the streaming data
Active node

In addition, the proposed algorithms have other applications. Transcoding
(transforming encoding formats) at active nodes is one such application. The
preference vector can be utilized to carry the clients’ desired format back up the
tree. The same mechanism used to minimize the cost of replacement operations
will also minimize the cost of transcoding operations.

4 Implementation

To implement our algorithm, we used our active network environment which is
based on a 100BASE-T Ethernet. The architecture of the environment is based
on the “active packets approach” [B]; the active code contained in a active packet
can read from and write to the memories of each node. Memory contents are
kept after the evaluation of a packet is completed.

In our commercial multicasting implementation, a server sends out an
MPEG?2 data stream and clients receive the stream with their favorite adver-
tisements. We used characters as the advertisement data in the first trial, and
the implemented advertisement attaching algorithm is based on the binary cost
model. We used two kinds of active packets: request packets and delivery packets,
as shown in Table 2l

The active packet in the request phase includes a preference vector, and the
delivery packet includes the MPEG?2 streaming data and the advertisement data.
We call the packets carrying a preference vector the request packets. They also
have the join-packet function for multicast-tree construction. In other words,
request packets are sent at interval D by the clients and are used to dynami-
cally construct multicast trees (i.e., create/update the multicast routing table)
as shown in Section 2] as well as to create/update the delivery tables. Thus

Adaptive Stream Multicast Based on IP Unicast 131

SoftDecoder(10012)-20012 file : NT'T

DispClient (10012)

F for all sky goo

I Hews [~ Sparts A Heather I Music
A Travel I Gourmet I Other I None

Channel 1 — |

Viewer. Control Panel.

Fig.10. A Snapshot of the Client Interface.

the source and destination of the request packet is the client and the server,
respectively.

When request packets arrive at an active node, the preference vectors con-
tained in the packets and their arrival time are recorded for each client in a
table, called a vector table. Table [is an example of a vector table. The deliv-
ery table then is created or updated. Next, a new preference vector is computed
from the preference vectors recorded in the vector table according to the method
in section Bl Finally the new vector is sent to the server (by using a request
packet) if it is different from the last vector sent or time D has passed since the
last time a request packet was sent. At this time, the source and destination of
the request packet is the active node and the server, respectively. These above
operations are performed by evaluating the active code in each request packet.

Delivery packets are initially sent by the server to its children (i.e. active
nodes or clients). When a delivery packet that has the ith ad-category arrives,
the advertisement replacement operation is performed (if needed) for each live
child j according to the (7,7) element of the delivery table, and the delivery
packet is sent to the jth child, where the source and destination of the delivery
packets is the server and the jth child, respectively. Whether a child is alive or
not is determined by comparing the current time with the arrival time of the
last request packet from the child. These actions are performed by evaluating
the active code in the delivery packet.

Note that the vector table and the delivery table as well as the multicast
routing table are required for each multicast tree (i.e. each server). In our im-
plementation, these tables are merged into one table for space efficiency.

Figure [0 shows the user interface of the client program. The right panel
(control panel) is for selecting favorite ad-categories and choosing channels. Fa-
vorite ad-categories can be changed while receiving the streaming data. The
advertisement is displayed on the upper part of the control panel. The left panel

132 Seiichiro Tani, Toshiaki Miyazaki, and Noriyuki Takahashi

[Serverl] (Server 2] e oo

¢

Active Network Environment

clients

Fig. 11. Experimental Environment.

is a viewer that displays the streaming data (MPEG2 movies). Each channel
corresponds to a multicast tree. In our experiment, we prepared several servers
as shown in Figure[IIl. Any of the streaming data from these servers can be dis-
played in the client program by selecting the corresponding channel. Feasibility
testing confirmed that implementing the algorithms did not create a bottleneck
in terms of CPU performance.

5 Conclusion

With IP-unicast-based multicasting, individuals can easily multicast streams,
since the global uniqueness of each multicast group is naturally guaranteed by
server address and port. Furthermore, it is not necessary to modify legacy nodes
when introducing active nodes as branch points to existing networks in order to
service IP-unicast-based multicasting.

In this paper, we proposed a scalable and adaptable IP-unicast-based mul-
ticast protocol. The basic idea of our protocol is to dynamically construct a
multicast tree by sharing common links among unicast reverse-paths between
a server and clients. The multicast communication realized by this mechanism
still appears to be unicast for each server-client pair. This aspect releases servers
and clients from needing any special multicast mechanism. The keep-alive tech-
nique, a key feature of our protocol, enables the load-balancing of active nodes
and dynamic tree reconstruction. It uses only keep-alive packets, i.e., request
packets periodically sent to the server. This simple mechanism makes our proto-
col scalable. The dynamic tree reconstruction so realized naturally supports the
mobility of servers as well as clients. In order to reduce the load of the nodes,
the keep-alive mechanism does not use timers, only keep-alive packets need be

Adaptive Stream Multicast Based on IP Unicast 133

sent to active nodes. This timerless approach is realized by an algorithm that
dynamically sets the appropriate time-out at each active node.

To make our multicast more attractive, we developed an algorithm that at-
taches at active nodes advertisements that fit the preference of each recipient.
The algorithm determines which active nodes should attach which advertise-
ments in order to minimize the total attachment cost over each multicast tree.
The advertisement attachment algorithm is so general and effective that it can be
applied to other services such as transforming encoding formats (transcoding).

We implemented our multicast mechanism with the advertisement attach-
ment function within our active network environment. Our work so far has
demonstrated the validity of the idea. In the future, we plan to quantitatively
evaluate the mechanisms’ performance.

References

[1] H. Akamine, N. Wakamiya, M. Murata, and H. Miyahara. An approach for hetero-
geneous video multicast using active networking. In Proceedings of IWAN 2000.
IFIP, 2000.

[2] B. Duysburgh, T. Lambrecht, B. Dhoedt, and P. Demeester. Date transcoding in
multicast sessions in active networks. In Proceedings of IWAN 2000. IFIP, 2000.

[3] H.W. Holbrook and D.R. Cheriton. IP multicast channels: EXPRESS support for
large-scale single-source application. In Proceedings of SIGCOMM, 1999.

[4] L.H. Lehman, S.J. Garland, and D.L. Tennenhouse. Active reliable multicast. In
Proceedings of INFOCOM’98. IEEE, 1998.

[5] K. Psounis. Active networks: Applications, secuirity, safety, and architectures.
IEEE Communicatons Surveys, pages pp. 2-16, 1999.

[6] RFC1075. Distance Vector Multicast Routing Protocol. IETF Home Page:
http://www.ietf.org,

[7] RFC1584. Multicast Extensions of OSPF. IETF Home Page:
http://www.ietf.org,

[8] RFC1889. RTP: A Transport Protocol for Real-Time Applications. IETF Home
Page: http://www.ietf.org,

[9] RFC2002. IP Mobility Support. IETF Home Page: http://www.ietf.orgl

[10] RFC2117. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol
Specification. IETF Home Page: http://www.ietf.org.

[11] RFC2189. Core Based Trees (CBT version 2) Multicast Routing. IETF Home
Page: http://www.ietf.org)

[12] I. Stoica, T.S. Eugene, and H. Zhang. Reunite: A recursive unicast approach to
multicast. In Proceedings of the INFOCOM 2000. IEEE, 2000.

[13] S. Wen, J. Griffioen, and K.L. Calvert. Building multicast services from unicast
forwarding and ephemeral state. In Proceedings of OPENARCH 2001. IEEE,
2001.

http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org

	Introduction
	Multicast Using IP-Unicast Addresses
	Protocol
	Load Balancing
	Dynamic Reconstruction of Multicast Trees
	Expiration Time

	Attaching Advertisements Customized for Each Client
	Binary Cost Model
	General Cost Model
	Applications

	Implementation
	Conclusion

