Skip to main content

Transportable Modular Symbols and the Intersection Pairing

  • Conference paper
  • First Online:
Book cover Algorithmic Number Theory (ANTS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2369))

Included in the following conference series:

  • 1586 Accesses

Abstract

Transportable modular symbols were originally introduced in order to compute periods of modular forms [18]. Here we use them to give an algorithm to compute the intersection pairing for modular symbols of weight k ≥ 2. This generalizes the algorithm given by Merel [13] for computing the intersection pairing for modular symbols of weight 2. We also define a certain subspace of the space of transportable modular symbols, and give numerical evidence to support a conjecture that this space should replace the usual space of cuspidal modular symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. J. Birch, Elliptic curves over Q: A progress report, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pp. 396–400. Amer. Math. Soc., Providence, R.I., 1971.

    Google Scholar 

  2. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, 1997, http://www.maths.usyd.edu.au:8000/u/magma/, pp. 235–265.

  3. J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  4. Exp. 355, P. P. Deligne, Formes modulaires et representations l-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363. LNM 179, Springer-Verlag, 139–172.

    Google Scholar 

  5. N. Dummigan, Period ratios of modular forms, Math. Ann. 318 (2000), no. 3, 621–636.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. V. Flynn, F. Leprévost, E. Schaefer, W. Stein, M. Stoll and J. Wetherell. Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves. Math. Comp. 70 (2001), no. 236, 1675–1697

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Frey, M. Müller, Arithmetic of modular curves and applications. Algorithmic algebra and number theory (Heidelberg, 1997), 11–48, Springer, Berlin, 1999.

    Google Scholar 

  8. D. R. Kohel and Stein, W. A. Component groups of quotients of J0(N), Algorithmic number theory (Leiden, 2000), 405–412, Lecture Notes in Comput. Sci., 1838.

    Google Scholar 

  9. R. S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the modular group. Amer. J. Math. 113 (1991), no. 6, 1053–1133

    Article  MATH  MathSciNet  Google Scholar 

  10. J. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66.

    MATH  MathSciNet  Google Scholar 

  11. B. Mazur, Courbes elliptiques et symboles modulaires, Séminaire Bourbaki, 24éme année (1971/1972), Exp. No. 414, pp. 277–294. Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973.

    Chapter  Google Scholar 

  12. B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Merel, Intersections sur des courbes modulaires., Manuscripta Math. 80 (1993), no. 3, 283–289.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Merel, Universal Fourier expansions of modular forms, On Artin’s conjecture for odd 2-dimensional representations (Berlin), Springer, 1994, pp. 59–94.

    Google Scholar 

  15. V. V. Šokurov, Modular symbols of arbitrary weight, Funkcional. Anal. i Priložen. 10 (1976), no. 1, 95–96.

    Google Scholar 

  16. W. A. Stein, Explicit approaches to modular abelian varieties, U. C. Berkeley Ph.D. thesis (2000).

    Google Scholar 

  17. W. A. Stein Modular Symbols, Chapter 88–90 in The Magma Handbook, Volume 7, J. Cannon, W. Bosma Eds., (2001).

    Google Scholar 

  18. W. A. Stein and H. A. Verrill, Cuspidal modular symbols are transportable, LMS Journal of Computational Mathematics 4 (2001), 170–181.

    MATH  MathSciNet  Google Scholar 

  19. H. A. Verrill, Lattices of higher weight modular symbols, preprint.

    Google Scholar 

  20. H.A. Verrill, Subgroups of PSL2(R), Chapter in The Magma Handbook, Volume 2, J. Cannon, W. Bosma Eds., (2001), 233–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verrill, H.A. (2002). Transportable Modular Symbols and the Intersection Pairing. In: Fieker, C., Kohel, D.R. (eds) Algorithmic Number Theory. ANTS 2002. Lecture Notes in Computer Science, vol 2369. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45455-1_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-45455-1_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43863-2

  • Online ISBN: 978-3-540-45455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics