Skip to main content

Investigation of Age and Sex Effects in Spatial Cognitions as Assessed in a Locomotor Maze and in a 2-D Computer Maze

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1849))

Abstract

Spatial behavior was assessed by a locomotor maze and a comparable 2-D computer version of this maze. Probable age and sex effects were studied before and after puberty, and in later adulthood. No sex differences were found in either task. In the locomotor task, age groups didn’t differ with respect to exploration and orientation. The challenge provided by the PC task was greater for children and middle-aged adults. During acquisition of the locomotor maze children were inferior compared to the two adult groups, students tended to be slightly better than middle-aged adults. In the PC task differences in acquisition were mostly found between the children’s group and the two adult groups. Spatial memory errors showed a developmental course. In both tasks spatial performance in adults followed a “one-trial” course, whereas in children a gradual decline of errors across learning trials was seen. It is concluded that apparent similarities between the motor and non-motor task may account for some fundamental strategic processes underlying these different spatial tasks.

This research was supported by the DFG governmental program “Spatial Cognition” (Le 846/2-2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acredolo, L.P., Adams, A. & Goodwyn, S.W.(1984). The role of self-produced movement and visual tracking in infant spatial orientation. Journal of Experimental Child Psychology, 38, 312–327.

    Article  Google Scholar 

  2. Barnes, C.A., Nadel, L. & Honig, W.K. (1980). Spatial memory deficits in senescent rats. Canadian Journal of Psychology, 34, 29–29.

    Google Scholar 

  3. Bertenthal, B.I., Campos, J.J. & Barrett, K.C. (1984). Self-produced locomotion: An organizer of emotional, cognitive, and social development in infancy. In R. Emde & R. Harmon(Eds.), Continuities and discontinuities in development (pp. 175–210). New York: Plenum.

    Google Scholar 

  4. Blumenshine, R.J. & Cavallo, J.A. (1992). Scavenging and human evolution. Scientific American, 267(4), 90–96.

    Article  Google Scholar 

  5. Bohbot, V. D., Kalinka, M., Stepankova, K., Spackova, N., Petrides, M. & Nadel, L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and the right parahippocampal cortex. Neuropsychologia, 36, 1217–1238.

    Article  Google Scholar 

  6. Böller, M. (1999). Die Effekte der aktiven und passiven Lokomotion auf den Erwerb räumlicher Anordnungen bei gesunden 7-jährigen Kindern. Diploma-Thesis at the Dept. of Psychology, University of Kiel.

    Google Scholar 

  7. Brooks, B.M., McNeil, J.E., Rose, F.D., Greenwood, J.R., Attree, E.A. & Leadbetter, A.G. (1999). Route learning in a case of amnesia: A preliminary investigation into the efficacy of training in a virtual environment. Journal of Neuropsychological Rehabilitation, in press.

    Google Scholar 

  8. Chi, D.M., Kokkevis, E., Ogunyemi, O., Bindiganavale, R., Hollick, M.J., Clarke, J.R., Webber, B.L. & Badler, N.I. (1997). Simulated casualities and medics for emergency training. Studies of Health Technology and Informatics, 39, 486–494.

    Google Scholar 

  9. Dollinger, S.M.C. (1995). Mental rotation performance: age, sex, and visual field differences. Developmental Neuropsychology, 11, 215–222.

    Article  Google Scholar 

  10. Eals, M. & Silverman, I. (1994). The hunter-gatherer theory of spatial sex differences: proximate factors mediating the female advantage in recall of object arrays. Ethological Sociobiology, 15, 95–105.

    Article  Google Scholar 

  11. Feldman, A. & Acredolo, L. (1979). The Effect of Active versus Passive Exploration on Memory for Spatial Location in Children. Child Development 50, 698–704.

    Article  Google Scholar 

  12. Foreman, N., Foreman, D., Cummings, A. & Owens, S. (1990). Locomotion, active choice, and spatial memory in children. The Journal of General Psychology, 117, 215–232.

    Article  Google Scholar 

  13. Foreman, N., Warry, R. & Murray, P. (1990). Development of reference and working spatial memory in preschool children. The journal of General Psychology, 117(3), 267–276.

    Google Scholar 

  14. Foreman, N., Gillet, R. & Jones, S. (1994). Choice autonomy and memory for spatial locations in six-year-old children. British Journal of Psychology, 85, 17–27.

    Google Scholar 

  15. Foreman, N., Stirk, J., Pohl, J., Mandelkow; L., Lehnung, M., Herzog, A. & Leplow, B. (2000). Spatial information transfer from virtual to real versions of the Kiel locomotor maze. Behavioural Brain Research in press.

    Google Scholar 

  16. Hampson, E. (1990). Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology, 15, 97–111.

    Article  Google Scholar 

  17. Hampson, E. & Kimura, D. (1988). Reciprocal effects of hormonal fluctuations on human motor and perceptual spatial skills. Behavioral Neuroscience, 102, 456–459.

    Article  Google Scholar 

  18. Herman, J.F., Kolker; R.G. & Shaw, M.L.(1982). Effects of motor activity on children’s intentional and incidental memory for spatial locations. Child Development, 53, 239–244.

    Article  Google Scholar 

  19. Herman, J.F. & Bruce, P.R.(1983). Adult’s mental rotation of spatial information: effects of age, sex and cerebral laterality. Experimental Aging Research, 9, 83–85.

    Google Scholar 

  20. Huttenlocher, J., Newcombe, N., & Sandberg, E.H. (1994). The coding of spatial location in children. Cognitive Psychology, 27, 115–147.

    Article  Google Scholar 

  21. Kermoin, R. & Campos, J.J. (1988). Locomotor Experience: A Facilitator of Spatial Cognitive Development. Child Development, 59, 908–917.

    Article  Google Scholar 

  22. Kimura, D. & Hampson, E. (1994). Cognitive pattern in men and women is influenced by fluctuations of sex hormones. Current Directions of Psychological Sciences, 3, 57–61.

    Article  Google Scholar 

  23. Koenig, W.D (1989). Sex-biased dispersal in the contemporary United States. Ethological Sociobiology, 10, 29–54.

    Article  Google Scholar 

  24. Kolb, D. & Wishaw, I.Q. (1996). Neuropsychologie, 2. Auflage, Heidelberg; Berlin; Oxford: Spektrum Akad. Verlag.

    Google Scholar 

  25. Lehnung, M. Leplow, B., Friege, L., Herzog, A. & Ferstl, R. (1998). Development of spatial memory and spatial orientation in preschoolers and primary school children. British Journal of Psychology, 89, 463–480.

    Google Scholar 

  26. Leplow, B. (1994). Diesseits von Zeit und Raum: Zur Neuropsychologie der räumlichen Orientierung (Neuropsychology of spatial orientation). Habilitation thesis University of Kiel.

    Google Scholar 

  27. Leplow, B., Höll, D., Zeng, L. & Mehdorn, M. (1998). Spatial Orientation and Spatial Memory Within a ‘Locomotor Maze’ for Humans. In Chr. Freksa, Chr Habel and F. Wender (Eds.) Lecture Notes of Artificial Intelligence 1404/ Computer Sciences/ Spatial Cognition, pp 429–446, Springer: Berlin.

    Google Scholar 

  28. Morris, R.G.M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239–260.

    Article  Google Scholar 

  29. O’Keefe, J. & Nade L. (1978). The hippocampus as a cognitive map. Oxford University Press.

    Google Scholar 

  30. Olton, D.S. & Samuelson, R.J. (1976). Remembrance of places passed: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes, 2, 97–116.

    Article  Google Scholar 

  31. Olton, D.S., Becker, J.T. & Handelmann, G.E. (1979). Hippocampus, space, and memory. The Behavioral and Brain Sciences, 2, 313–365.

    Google Scholar 

  32. Overman, W.H., Pate, B.J., Moore, K. & Peuster, A. (1996). Ontogenecy of place learning in children as measured in the radial arm maze, Morris search task, and open field task. Behavioral Neuroscience, 110, 1205–1228.

    Article  Google Scholar 

  33. Peruch, P., Vercher, J. & Gauthier, G.M. (1995). Acquisition of spatial knowledge through visual exploration of simulated environments. Ecological Psychology, 7, 1–20.

    Article  Google Scholar 

  34. Rose, F.D., Attree, E.A. & Johnson, D.A. (1996). Virtual Reality: An assistive technology in neurological rehabilitation. Current Opinion in Neurology, 9, 461–467.

    Article  Google Scholar 

  35. Rose, F.D., Johnson, D.A., Attree, E.A., Leadbetter, A.G. & Andrews, T.K. (1996). Virtual reality in neurological rehabilitation. British Journal of Therapy and Rehabilitation, 3, 223–228.

    Google Scholar 

  36. Ruddle, R.A., Payne, S.J. & Jones, D.M. (1996) Navigating buildings in “desktop” virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3, 143–159.

    Article  Google Scholar 

  37. Sherry D.F. & Hampson, E. (1997). Evolution and the hormonal control of sexually-dimorphic spatial abilities in humans. Trends in Cognitive Sciences, 1, 50–55.

    Article  Google Scholar 

  38. Sherry, D.F., Jacobs, L.F. & Gaulin, S.C. (1992) Spatial memory and adaptive specialization of the hippocampus. Trends in Neuroscience, 15, 298–303.

    Article  Google Scholar 

  39. Silverman, I. & Eals, M. (1992). In: J.H. Barkow, L. Cosmides & J. Tooby (Eds.), The adaptive Mind: Evolutionary Psychology and the Generation of Culture, (pp. 533–549). Oxford: University Press.

    Google Scholar 

  40. Silverman, I. & Phillips, K. (1993). Effects of estrogen changes in during the menstrual cycle on spatial performance. Ethological Sociobiology, 14, 257–270.

    Article  Google Scholar 

  41. Stanton, D., Wilson, P. & Foreman, N. (1996). Using virtual reality to aid spatial awareness in disabled children. In: P. Sharkey(Ed.), Proceedings of the First International Conference on Disability, Virtual Reality, and Associated Technologies. Reading, Berkshire; pp. 93–101.

    Google Scholar 

  42. Taeger, B. (1999). Die Entwicklung von Orientierungsstrategien im Raum anhand von distalen Hinweisreizen. Diploma-Thesis at the Dept. of Psychology, University of Kiel.

    Google Scholar 

  43. Thorndyke, P.W. & Hayes-Roth, B. (1982) Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14 560–589.

    Article  Google Scholar 

  44. Voyer, D., Voyer, S. & Bryden, M.P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.

    Article  Google Scholar 

  45. Wilson, P.N. (1997). Use of virtual reality computing in spatial learning research. In: N. Foreman, R. Gillet et al. (Eds.), A handbook of spatial research paradigms and methodologies, Vol. 1: Spatial cognition in the child and adult (pp.181–206). Hove, England, UK: Psychology Press: Erlbaum (UK).

    Google Scholar 

  46. Wilson, P., Foreman, N. & Tlauka, M. (1997) Transfer of spatial information from a virtual to a real environment. Human Factors, 39, 526–531.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leplow, B., Höll, D., Zeng, L., Mehdorn, M. (2000). Investigation of Age and Sex Effects in Spatial Cognitions as Assessed in a Locomotor Maze and in a 2-D Computer Maze. In: Freksa, C., Habel, C., Brauer, W., Wender, K.F. (eds) Spatial Cognition II. Lecture Notes in Computer Science(), vol 1849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45460-8_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-45460-8_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67584-6

  • Online ISBN: 978-3-540-45460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics