Skip to main content

Bounded-Depth Frege Systems with Counting Axioms Polynomially Simulate Nullstellensatz Refutations

Extended Abstract

  • Conference paper
  • First Online:
  • 2182 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2380))

Abstract

We show that bounded-depth Frege systems with counting axioms modulo m polynomially simulate Nullstellensatz refutations modulo m. When combined with a previous result of the authors, this establishes the first size (as opposed to degree) separation between Nullstellensatz and polynomial calculus refutations.

Research Supported by NSF Award CCR-9734911, grant #93025 of the joint US-Czechoslovak Science and Technology Program, NSF Award CCR-0098197, and USA-Israel BSF Grant 97-00188

Partially supported by NSF grant DMS-9803515

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. Parity and the pigeonhole principle. In FEASMATH: Feasible Mathematics: A Mathematical Sciences Institute Workshop. Birkhauser, 1990.

    Google Scholar 

  2. M. Ajtai. The independence of the modulo p counting principles. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pages 402–411, 23–25 May 1994.

    Google Scholar 

  3. M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Wigderson. Pseudorandom generators in propositional proof complexity. In 41st Annual Symposium on Foundations of Computer Science: proceedings: 12-14 November, 2000, Redondo Beach, California, pages 43–53, 2000.

    Google Scholar 

  4. P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, and P. Pudlák. Lower bound on Hilbert’s Nullstellensatz and propositional proofs. In 35th Annual Symposium on Foundations of Computer Science, pages 794–806. IEEE, 20–22 November 1994.

    Google Scholar 

  5. P. Beame and T. Pitassi. Propositional proof complexity: Past, present, and future. Bulletin of the EATCS, 65:66–89, 1998.

    MATH  MathSciNet  Google Scholar 

  6. P. Beame and S. Riis. More one the relative strength of counting principles. In P. Beame and S. Buss, editors, Proof Complexity and Feasible Arithmetics, pages 13–35. American Mathematical Society, 1998.

    Google Scholar 

  7. S. Buss, R. Impagliazzo, J. Krajíček, P. Pudlák, R. Razborov, and J. Sgall. Proof complexity in algebraic systems and bounded depth frege systems with modular counting. Computational Complexity, 6, 1997.

    Google Scholar 

  8. S. Buss and T. Pitassi. Good degree bounds on nullstellensatz refutations of the induction principle. In Proceedings of the Eleventh Annual Conference on Computational Complexity, 1996.

    Google Scholar 

  9. M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner basis algorithm to find proofs of unsatisfiability. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 174–183, 22–24 May 1996.

    Google Scholar 

  10. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. The Journal of Symbolic Logic, 44(1):36–50, March 1979.

    Google Scholar 

  11. R. Impagliazzo and N. Segerlind. Counting axioms do not polynomially simulate counting gates (extended abstract). In Proceedings of the Forty-Second Annual Symposium on Foundations of Computer Science, pages 200–209. IEEE Computer Society, 2001.

    Google Scholar 

  12. J. Krajíček. Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press, 1995.

    Google Scholar 

  13. J. Krajíček. Uniform families of polynomial equations over a finite field and structures admitting and euler characteristic of definable sets. Proc. London Mathematical Society, 3(81):257–284, 2000.

    Article  Google Scholar 

  14. J. Krajíček. Tautologies from pseudo-random generators. The Bulletin of Symbolic Logic, 7(2):197–212, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Pudlák. The lengths of proofs. In S. R. Buss, editor, Handbook of Proof Theory, pages 547–637. Elsevier North-Holland, 1998.

    Chapter  Google Scholar 

  16. A. Razborov. On the method of approximations. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages 167–176, 15–17 May 1989.

    Google Scholar 

  17. A. Razborov. Lower bounds for the polynomial calculus. CMPCMPL: Computational Complexity, 7, 1998.

    Google Scholar 

  18. S. Riis. Count(q) does not imply Count(p). Annals of Pure and Applied Logic, 90(1–3):1–56, 15 December 1997.

    Google Scholar 

  19. R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 77–82, New York City, 25–27 May 1987.

    Google Scholar 

  20. G. Tseitin. On the complexity of proofs in propositional logics. Seminars in Mathematics, 8, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Impagliazzo, R., Segerlind, N. (2002). Bounded-Depth Frege Systems with Counting Axioms Polynomially Simulate Nullstellensatz Refutations. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds) Automata, Languages and Programming. ICALP 2002. Lecture Notes in Computer Science, vol 2380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45465-9_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-45465-9_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43864-9

  • Online ISBN: 978-3-540-45465-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics