
Program Debugging and Validation 
Using Semantic Approximations 

and Partial Speciflcations 

M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García 

School of Computer Science 
Technical University of Madrid, Spain 

herme@fi.upm.es, ht tp: / /www.cl ip .dia . f i .upm.es/~herme 

(Extended Abstract) 

The technique of Abstract Interpretation [11] has allowed the development 
of sophisticated program analyses which are provably correct and practical. The 
semantic approximations produced by such analyses have been traditionally ap-
plied to optimization during program compilation. However, recently, novel and 
promising applications of semantic approximations have been proposed in the 
more general context of program validation and debugging [3, 9, 7]. 

We study the case of (Constraint) Logic Programs (CLP), motivated by the 
comparatively large body of approximation domains, inference techniques, and 
tools for abstract interpretation-based semantic analysis which have been de-
veloped to a powerful and mature level for this programming paradigm (see, 
e.g., [23, 8, 18, 6, 12] and their references). These systems can approximate at 
compile-time a wide range of properties, from directional types to determinacy 
or termination, always safely, and with a significant degree of precisión. Thus, 
our approach is to take advantage of these advances in program analysis tools 
within the context of program validation and debugging, rather than using tra-
ditional proof-based methods (e.g., [1, 2, 13, 17, 28]), developing new tools and 
procedures, such as specific concrete [4, 15, 16] or abstract [9, 10] diagnosers and 
declarative debuggers, or limiting error detection to run-time checking [28]. 

In this talk we discuss these issues and present a framework for combined 
static/dynamic validation and debugging using semantic approximations [7, 26, 
21] which is meant to be a part of an advanced program development envi-
ronment comprising a variety of co-existing tools [14]. Program validation and 
detection of errors is first performed at compile-time by inferring properties of 
the program via abstract interpretation-based static analysis and comparing this 
information against (partial) speciñcations written in terms of assertions. Such 
assertions are linguistic constructions which allow expressing properties of pro­
grams. 

Classical examples of assertions are type declarations (e.g., in the context of 
(C)LP those used by [22, 27, 5]). However, herein we are interested in supporting 
a more general setting in which assertions can be of a much more general nature, 
stating additionally other properties, some of which cannot always be determined 
statically for all programs. These properties may include properties defined by 
means of user programs and extend beyond the predefined set which may be 

mailto:herme@fi.upm.es
http://www.clip.dia.fi.upm.es/~herme


natively understandable by the available static analyzers. Also, in the proposed 
framework only a small number of (even zero) assertions may be present in the 
program, i.e., the assertions are optional. In general, we do not wish to limit the 
programming language or the language of assertions unnecessarily in order to 
make the validity of the assertions statically decidable (and, consequently, the 
proposed framework needs to deal throughout with approximations). We present 
a concrete language of assertions which allows writing this kind of (partial) 
specifications for (C)LP [25]. 

The assertion language is also used by the compiler to express both the in-
formation inferred by the analysis and the results of the comparisons performed 
against the specifications.1 These comparisons can result in proving statically 
(i.e., at compile-time) that the assertions hold (i.e., they are validated) or that 
they are violated, and thus bugs have been detected. User-provided assertions 
(or parís of assertions) which cannot be statically proved ñor disproved are op-
tionally translated into run-time tests. Both the static and the dynamic checking 
are provably safe in the sense that all errors flagged are definite violations of the 
specifications. 

We illustrate the practical usefulness of the framework by demonstrating 
what is arguably the first and most complete implementation of these ideas: 
CiaoPP, the Ciao system preprocessor [24, 20]. Ciao is a public-domain, next-
generation (constraint) logic programming system, which supports ISO-Prolog, 
but also, selectively for each module, puré logic programming, functions, con-
straints, objects, or higher-order. Ciao is specifically designed to a) be highly 
extendible and b) support modular program analysis, debugging, and optimiza-
tion. The latter tasks are performed in an integrated fashion by CiaoPP. 

CiaoPP, which incorporates analyses developed by several groups in the com-
munity, uses abstract interpretation to infer properties of program predicates and 
literals, including types, modes and other variable instantiation properties, non-
failure, determinacy, bounds on computational cost, bounds on sizes of terms in 
the program, etc. It processes modules separately, performing incremental anal­
ysis. CiaoPP can find errors at compile-time (or perform partial verification), 
by checking how programs cali system librarles and also by checking assertions 
present in the program or in other modules used by the program. This allows 
detecting errors in user programs even if they contain no assertions. In addition, 
CiaoPP also performs program transformations and optimizations such as múl­
tiple abstract specialization, parallelization (including granularity control), and 
inclusión of run-time tests for assertions which cannot be checked completely at 
compile-time. 

The implementation of the preprocessor is generic in that it can be easily 
customized to different CLP systems and dialects and in that it is designed to 

1 Interestingly, the assertions are also quite useful for generating documentation au-
tomatically using [19] 



allow the integration of additional analyses in a simple way (for example, it has 
been adapted for use with the CHIP CLP(fd) system). 

M o r e info: For more information, full versions of selected papers and techni-
cal reports, and /o r to download Ciao and other related systems please access 
h t t p : / / w w w . c l i p . d i a . f i . u p m . e s / . 

K e y w o r d s : Global Analysis, Debugging, Verification, Parallelization, Optimiza-
tion, Abstract Interpretation. 

References 

[1] K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes 
through types to assertions. Formal Aspects of Computing, 6(6):743-765, 1994. 

[2] K. R. Apt and D. Pedreschi. Reasoning about termination of puré PROLOG 
programs. Information and Computation, 1(106):109-157, 1993. 

[3] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In 
Programming Languages Design and Implementation'93, pages 46-55, 1993. 

[4] J. Boye, W. Drabent, and J. Maluszynski. Declarative diagnosis of constraint 
programs: an assertion-based approach. In Proc. of the 3rd. Int'l Workshop on 
Automated Debugging-AADEBUG'97, pages 123-141, Linkóping, Sweden, May 
1997. U. of Linkóping Press. 

[5] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and 
G. Puebla. The Ciao Prolog System. Reference Manual. TR CLIP3/97.1, 
School of Computer Science, Technical University of Madrid (UPM), Au-
gust 1997. System and on-line versión of the manual available at 
h t t p : / / c l i p .d i a . f i . upm.es /So f tware /C iao / . 

[6] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Stan­
dard Prolog Programs. In European Symposium on Programming, number 1058 
in LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag. 

[7] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyñ­
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and 
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int'l Workshop on 
Automated Debugging-AADEBUG'97, pages 155-170, Linkóping, Sweden, May 
1997. U. of Linkóping Press. 

[8] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Ab­
stract Interpretation Algorithm for Prolog. ACM Transactions on Programming 
Languages and Systems, 16(1):35-101, 1994. 

[9] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic 
programs by abstract diagnosis. In M. Dams, editor, Analysis and Verification 
of Múltiple-Agent Languages, 5th LOMAPS Workshop, number 1192 in Lecture 
Notes in Computer Science, pages 22-50. Springer-Verlag, 1996. 

[10] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of 
Logic Programming, 39(1-3):43-93, 1999. 

[11] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for 
Static Analysis of Programs by Construction or Approximation of Fixpoints. In 
4th. ACM Symp. on Principies of Programming Languages, pages 238-252, 1977. 

[12] M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, 
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs. 
ACM Transactions on Programming Languages and Systems, 18(5):564-615, 
September 1996. 

http://www.clip.dia.fi.upm.es/
http://clip.dia.fi.upm.es/Software/Ciao/


[13] P. Deransart. Proof methods of declarative properties of definite programs. The-
oretical Computer Science, 118:99-166, 1993. 

[14] P. Deransart, M. Hermenegildo, and J. Maluszynski. Analysis and Visualiza-
tion Tools for Constraint Programming. Number 1870 in LNCS. Springer-Verlag, 
September 2000. 

[15] W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The Use of Assertions in 
Algorithmic Debugging. In Proceedings of the Intl. Conf. on Fifth Generation 
Computer Systems, pages 573-581, 1988. 

[16] W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with 
assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming in Logic 
Programming, pages 501-522. MIT Press, 1989. 

[17] G. Ferrand. Error diagnosis in logic programming. J. Logic Programming, 4:177-
198, 1987. 

[18] J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of 
logic programs. In Pascal Van Hentenryck, editor, Proc. of the llth International 
Conference on Logic Programming, pages 599-613. MIT Press, 1994. 

[19] M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Interna­
tional Conference on Computational Logic, CL2000, number 1861 in LNAI, pages 
1345-1361. Springer-Verlag, July 2000. 

[20] M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program Analy­
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999 
International Conference on Logic Programming, pages 52-66, Cambridge, MA, 
November 1999. MIT Press. 

[21] M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-
ifications, and an Extensible Assertion Language for Program Validation and De­
bugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, editors, The 
Logic Programming Paradigm: a 25-Year Perspective, pages 161-192. Springer-
Verlag, July 1999. 

[22] P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge 
MA, 1994. 

[23] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable 
Dependency Using Abstract Interpretation. Journal of Logic Programming, 
13(2/3):315-347, July 1992. 

[24] G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program 
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski, 
editors, Analysis and Visualization Tools for Constraint Programming, number 
1870 in LNCS, pages 63-107. Springer-Verlag, September 2000. 

[25] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint 
Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, 
Analysis and Visualization Tools for Constraint Programming, number 1870 in 
LNCS, pages 23-61. Springer-Verlag, September 2000. 

[26] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic 
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Program 
Synthesis and Transformation (LOPSTR'99), number 1817 in LNCS, pages 273-
292. Springer-Verlag, 2000. 

[27] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: 
an efRcient purely declarative logic programming language. JLP, 29(1-3), October 
1996. 

[28] E. Vetillard. Utilisation de Declarations en Programmation Logique avec Con-
straintes. PhD thesis, U. of Aix-Marseilles II, 1994. 


