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Abstract. This paper address the problems of generating a low dimen-
sional representation of the shape variation present in a set of shapes
represented by a number of landmark points. First, we will present alter-
natives to the featured Least-Squares Procrustes alignment based on the
L∞-norm and the L1-norm. Second, we will define a new shape decom-
position based on the Maximum Autocorrelation Factor (MAF) analysis,
and investigate and compare its properties to the Principal Components
Analysis (PCA). It is shown that Molgedey-Schuster algorithm for Inde-
pendent Component Analysis (ICA) is equivalent to the MAF analysis.
The shape MAF analysis utilises the natural order of landmark points
along shape contours.

1 Introduction

The Point Distribution Model (PDM) based on PCA of the Active Shape Model
(ASM) [1,2] has been succesfully applied to the modelling of the shape of biolog-
ical objects based on training sets represented by corresponding points. For use
for simulation, prediction, or segmentation [3,4,1] a fair number of landmarks
are necessary in order to achieve sufficiently good or realistic models. Landmarks
are often distributed along outlines or on surfaces equi-distantly or using some
other scheme.

Given their representation the objects are aligned wrt. translation, rotation,
and scale (e.g. bmo. a Procrustes analysis [5]). Finally, the residual variation
is decomposed into latent variables and a low dimensional representation is ob-
tained by retaining only the most important of these. The decomposition of
the variation has been based on a number of transformations, most importantly
PCA [1,4]. The use of Fourier modes and wavelets are also reported [6,7].

We propose that the choice of landmarks carries important implications for
the alignment when using the L2-norm based Procrustes analysis and thereby
for the resulting shape models. In order to lessen this effect we investigate the
use of the L∞-norm and the L1-norm for aligning the shapes.

Furthermore, we propose an extension to the PCA PDM using the MAF
analysis. The MAF by Paul Switzer [8] analysis was originally proposed as an
alternative transformation of multivariate spatial imagery to the celebrated PCA
transform. In the MAF analysis we seek a transformation that maximises the
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autocorrelation between neighbouring observations (e.g. pixels). The basic as-
sumption of the MAF analysis is that the interesting signal exhibits high au-
tocorrelation, whereas the noise exhibits low autocorrelation. By building the
additional information of the structure of the observations into the model, ap-
plication examples (cf. [9,10]) result in a better separation between signal com-
ponents in one end of the eigenvalue spectrum and noise components in the other
end. This is particularly the case when some noise components have higher vari-
ance than some signal components. Because the PCA PDM is based on the first
say t modes of variation MAF will in this case result in better models than PCA.

The MAF analysis requires estimation of the covariance matrix of the data
as well as the covariance matrix of the difference between the original data and
a spatially shifted version of the data. Preliminary results are presented in [11].
In an Appendix A we will show that the Molgedey-Schuster algorithm for ICA
is equivalent to MAF analysis.

2 Metacarpal Data Set

The proposed methods are illustrated on annotated outlines of 24 metacarpals.
The annotations are based on 2-D wrist radiographs, an example is shown in
the background of Fig. 3(c). The annotations are prone to errors in the distal
and especially in the proximal ends due to the bones being overlaid in the 2-
D projection of the radiograph and thus difficult to discern. The annotation
variation is therefore point dependent. We believe this to be a common problem
to manual annotation. In order to be able to quantify this in the analyses we
have simulated two metacarpal datasets. These datasets are generated by first
fitting a B-spline to each of the metacarpal outlines after alignment, and second
by adding independent Gaussian noise. The noise variance varies smoothly along
the contours. It is small along the sides of the metacarpals and high at the ends.

3 Shape Alignment and Choice of Landmarks

Let there be given p training examples for a given shape class, and let each
example be represented by a set of n landmark points (xij , yij), i = 1, . . . , p and
j = 1, . . . , n. The alignment problem in 2D consists of estimating an average
shape, µ, and pose parameters for each shape. Let the pose parameters be scale:
βi ∈ IR+, rotation: ψ ∈ [0; 2π[, and translation: γi ∈ IR2. Then using a multiple
linear regression formulation as described in [5] the alignment problem consists
of a minimisation of a vector function

F =




µ − Z1θ1
...
µ − Zp−1θp−1

µ − Zp

[
1 0 0 0

]T


 , where Zi =




xi1 −yi1 1 0
...

...
...
...

xin −yin 1 0
yi1 xi1 0 1
...

...
...
...

yin xin 0 1



,
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wrt. θi = [βi cosψi, βi sinψi,γ
T
i ]

T . Note, that the average shape is constrained
wrt. to size, rotation, and translation by alignment with the last shape. The ith
aligned shape is given by Ziθi. Generalised Procrustes analysis is obtained by
minimising the L2-norm of this vector function. We will investigate the use of
the L1-norm and the L∞-norm.

Different choices of landmarks for a given class of objects will result in dif-
ferences in alignment. Consider a set of 10 triangles generated by adding i.i.d.
Gaussian noise to an equi-lateral prototype. We will represent these triangles by
(1) the coordinates of the corner points, and (2) the coordinates of the corner
points and 19 points placed equi-distantly on the lower side. The triangles are
shown in Fig. 1(a). The L2 Procrustes alignment results in the aligned shapes
shown in Figs. 1(b) and 1(e). Here the dense sampling of the lower side results
in more emphasis being put on the alignment of this side In the aligned dataset
the variation of the points on the densely sampled side exhibit smaller variation,
whereas the third corner point exhibit larger variation than we observed in the 3
point representation. By using the L∞–norm as shown in Figs. 1(c) and 1(f) we
achieve independence of the representation. The L1–norm (Figs. 1(d) and 1(d))
increases the effect of putting emphasis on densely sampled shape segments.
The L1–norm on the other hand aligns the lower side perfectly, and places all
variation on the top point. In effect the top point is regarded (wrongly) as an
outlier.

4 Maximum Autocorrelation Factor Analysis

Let the spatial (or temporal) covariance function of a multivariate stochastic
variable, Y k, where k denotes spatial position and ∆ a spatial shift, be Π(∆) =
Cov{Y k,Y k+∆}. Then by letting the covariance matrix of Y k beΣ and defining
the covariance matrix of the difference proces Σ∆ = Cov{Y k −Y k+∆}, we find

Σ∆ = 2Σ − Π(∆)− Π(−∆) (1)

Then the autocorrelation in shift ∆ of a linear combination of Y k is

Corr{wT
i Y k,w

T
i Y k+∆} = 1− 1

2
wT

i Σ∆wi

wT
i Σwi

. (2)

This quantity is maximised by minimisation of the Rayleigh coeeficient in the
second term. Therefore, the MAF transform is given by the set of conjugate
eigenvectors ofΣ∆ wrt.Σ,W = [w1, . . . ,wm], corresponding to the eigenvalues
κ1 ≤ · · · ≤ κm [8]. The resulting new variables are ordered so that the first
MAF is the linear combination that exhibits maximum autocorrelation. The ith
MAF is the linear combination that exhibits the highest autocorrelation subject
to it being uncorrelated to the previous MAFs. The autocorrelation of the ith
component is 1− 1

2κi.
Let the tangent space coordinates of the aligned shapes with the origin placed

at the mean shape be the rows of a data matrix, X. The PCA decomposition
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(a) (b) (c) (d) (e) (f) (g)

Fig. 1. (a) 10 unaligned triangles, (b-d) alignment based on the L2, L∞, and
the L1 norms, respectively. (e-g) aligned as (b-d) but with an additional 19
landmarks included distributed equidistantly on the lower side.
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Fig. 2. (a)-(c) The metacarpal dataset aligned and projected into tangent space
using the L1-norm, L2-norm, and L∞-norm, respectively. (d)-(g) Principal com-
ponents of the tangent space coordinates aligned using the L2-norm. (h)-(k)
Maximum autocorrelation factors of the tangent space coordinates aligned us-
ing the L2-norm. (l)-(o) Principal components of the tangent space coordinates
aligned using the L∞-norm. The blue curve is the mean shape the red and green
curves correspond to ±5 standard deviations. The distal end is up and the prox-
imal end is down.

of the dataset can be implemented by extraction of the right singular vectors
of a singular value decomposition of X (cf. [12]). These eigen vectors can also
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be extracted by an eigenvalue decomposition of the symmetric matrix XT X. In
statistical terms this is called an R-mode analysis.

Now, let X∆ be a matrix where the x and the y coordinates of each row ofX
have been cyclicly rotated ∆ shifts to the right. Consider a stochastic variable
consisting of the coordinates of a point across the shape training examples,
observations of which are given by the columns of X. Then estimators for the
covariance matrices in the MAF eigen problem in Eq. (2) are given by1

Σ̂ = 1
2nXXT Σ̂∆ = 1

2n (X − X∆)(X − X∆)T (3)

It can be noted that we solve the MAF problem in Q-mode. Therefore we will
denote the resulting transform Shape Q-MAF. The modes of variation from the
average shape are given by XT W . The low number of MAF components will
exhibit variations where neighbouring landmark points deform similarly.

5 Analysis of the Metacarpal Data Set

The alignment of the dataset consisting of 24 annotated metacarpals using three
different norms is shown in Figs. 2(a)–2(c). The alignments are computed using
an optimisation software described in [13].

In Figs. 2(d)–2(g) and 2(h)–2(k), the variations of four (3 first and the last)
principal components and Q-MAFs are shown. It turns out that the Q-MAF
modes constitute a decomposition of (localised) spatial frequency along the con-
tour with frequency increasing with mode number. Furthermore, the first two
modes are easily interpreted as thickness of the cortical bone/aspect ratio, mode
three as bending. In the high order number modes variations composed of neigh-
bouring points deforming in opposite directions are concentrated.

The PCA eigen modes are less easily interpreted and it seems that many
low number modes are devoted to descriptions of variations of the proximal end.
These are variations that may partially stem from annotation arbitrariness. We
would normally expect the most important variation in a dataset like this to be
variations in aspect ratio. However, because the L2–norm alignment has resulted
in all shapes having the same length, this effect is transformed into thickness
variation, which may lead to mis-interpretations. In Figs. 2(l)–2(o) 4 principal
components calculated from the dataset aligned using the L∞–norm are shown.
Where the L2 assigns high weight to alignment of the ends of the bone (i.e.
favoring many small deviations on the sides to larger deviations in the ends),
the L∞ norm is insensitive to the sampling density. We therefore in some sense
arrive at a more natural alignment. As we would expect, the first mode is aspect
ratio varying from long and slender to short and stocky.

The more general variant of ASM, Active Appearance Models (AAM) [14] is
based upon a PCA decomposition of a set of L2 Procrustes aligned shapes. An
AAM also includes a pixel-wise texture model. This is built by sampling object
pixel intensities in each training example followed by a PCA. Consequently,

1 The variables are corrected for ensemble means so �̂ is a sums-of-squares matrix.
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(a) (b) (c)

Fig. 3. (a) Metacarpal annotation. (b) Synthesised AAM metacarpal image. (c)
AAM segmentation result.

AAMs can synthesise images of the object class in question, see Fig. 3(b). For
segmentation purposes the model parameters are adjusted until the synthesised
image best matches the unknown image, i.e. under some similarity measure.

Upon the 24 metacarpal shapes and their corresponding radiographs, a leave-
one-out performance analysis has been carried out. Texture models consisted
of ∼10 000 pixels. The AAM was initialised using a search-based initialisation
method [15], that failed once in each of the three models due to an overlapping
metacarpal-1. These were discarded prior to assessment. An example segmen-
tation is shown in Fig. 3(c). The average point to border distance for the L1–
,L2–, and L∞–norm AAMs were 1.06 ± .25, 1.04 ± .21 and 1.09 ± .25 pixels,
respectively.

In order to evaluate the use of PCA vs. MAF and of the L2–norm vs. the
L∞–norm for building shape models we have tested on the simulated dataset.
The models are trained on 24 shapes, and validated on another 24 shapes with
independent noise. For all numbers of modes included in the models we have
computed the weighted root-mean-square (RMS) error between the fitted model,
and the shape without noise. The weights used are the inverse standard devia-
tions of the annotation noise. From plots of the RMS values shown in Fig. 4 we
see that the optimal model size is approx. 10, and that the performance is very
similar for the tested methods. L∞-norm alignment results in RMS errors that
are higher than for L2–norm alignment.

6 Conclusion

In this paper we have described the use of the infinity norm for shape alignment.
This resolves the problem of areas with densely sampled landmarks receiving
high weight in the alignment. Furthermore, we have presented the Q-MAF tran-
formation – a novel method for shape decomposition. In applying L∞–norm
Procrustes alignment as well as the Q-MAF transform to modelling of the out-
line of metacarpal bones we have achieved better interpretability of the modes
of variation at no cost wrt. precision.
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Fig. 4. RMS–error weigthed by the annotation noise for an independent vali-
dation set. Solid: L2, PCA; dashed: L2, MAF; dotted: L∞, PCA; dash-dotted:
L∞, MAF.
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A Equivalence of ICA and MAF

It turns out that Molgedey-Schusters algorithm for performing ICA [16] is the
same as the MAF analysis [8]. Assuming the linear mixing model of independent
components analysis X = AS, where X is the (P × N) data matrix with
each row consituting a signal, S is a matrix of the same form as X containing
independent signals in the rows, and A is a linear mixing matrix. Furthermore,
let X∆ and S∆ be X and S cyclicly shifted ∆ steps rowwise. Then the solution
is found by forming

Q=
1
2

[
X∆XT+XXT

∆

]
(XXT )−1=A

[
1
2
(S∆ST+SST

∆)(SST )−1

]
A−1 (4)

Due to the independence of the source signals the latter bracketed parenthesis
is diagonal. Therefore the mixing matrix can be determined by an eigenvalue
decomposition of the matrix Q, and the source signals up to a scale factor are
estimated by S = A−1X. Using Eq. (3) we find

Q =
1
2
[2Σ − Σ∆]Σ−1 =

[
I − 1

2
Σ∆Σ−1

]

The unity matrix I has no effect on the eigenvectors, so A simply consists of the
conjugate eigenvectors of Σ∆ wrt. Σ, i.e. the MAF problem given in Eq. (2).

It is easily shown that the MAF transform is invariant to affine transfor-
mations. Therefore we may execute a prewhitening beforehand, thus obtaining
Σ = I. Then Q becomes symmetric yielding A−1 = AT , and the MAF factors
become AT Xprewhitened, i.e. the independent components.
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