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Abstract. In previous work [Tsai et al , 1999] we introduced an infor-
mation theoretic approach for analysis of fMRI time-series data. Sub-
sequently, [Kim et al , 2000] we established a relationship between our
information theoretic approach and a simple non-parametric hypothesis
test. In this work, we describe an adaptive approach for incorporating the
temporal structure that relates the fMRI time-series to both the current
and past values of the experimental protocol. This is achieved via an ex-
tension of our previous approach using the information-theoretic concept
of entropy rate. It can be shown that, despite a differing implementation,
our prior method is a special case of the new approach. The entropy rate
of a random process quantifies future uncertainty conditioned on the
past and side-information (e.g. the experimental protocol, confounding
signals, etc.) without making strong assumptions about the nature of
that uncertainty (e.g. Gaussianity). Furthermore, we allow the form of
the dependency to vary from voxel to voxel in an adaptive fashion. The
combination of the information theoretic principles and adaptive estima-
tion of the temporal dependency allows for a more powerful and flexible
approach to fMRI analysis. Empirical results are presented on three fMRI
datasets measuring motor, auditory, and visual cortex activation com-
paring the new approach to the previous one as well as a variation on
the general linear model. Particular attention is paid to the differences
in the type of phenomenology detected by the respective approaches.
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1 Introduction

Previously, we have discussed the application of an information theoretic for-
malism to the analysis of fMRI time series. In [8] we presented a novel infor-
mation theoretic approach for calculating fMRI activation maps by estimating
the mutual information between an encoding of the experimental protocol and
fMRI voxel time-series. Subsequently in [5] we demonstrated the equivalence of
the method to a statistical hypothesis test when the underlying densities are
unknown. As a consequence, the computation of the activation map can be for-
mulated as a binary MAP detection problem using the Ising model as a spatial
prior and solved exactly in polynomial time using the Ford and Fulkerson method
[4]. The information-theoretic framework is appealing in that it is a principled
methodology requiring few assumptions about the structure of the fMRI signal.
It is capable of detecting unknown nonlinear and higher-order statistical depen-
dencies. Furthermore, it is relatively straightforward to implement. An implicit
assumption of [8] and [5] is that samples of the time-series are statistically in-
dependent. That is, time structure was neither assumed nor exploited. This is
in contrast to approaches based upon the general linear model (GLM) in which
strong assumptions about the time structure are made through the choice of a
set of basis vectors or equivalently a signal subspace [3].

In this work, we consider a natural extension to the information theoretic
method in which we learn and then exploit the time structure of the fMRI voxel
time-series and its dependence on the time structure of the protocol. Whereas
when we assumed sample independence, mutual information was a natural way
to relate the protocol to the fMRI time series, the information theoretic notion
of entropy rate is the natural quantity when we consider time structure. As a
consequence of the adaptive learning approach, we do not make strong assump-
tions about the exact nature of the time structure á priori, merely that it exists
and can be estimated. In fact, time dependence of the fMRI time-series is al-
lowed to vary from voxel to voxel. In doing so, the determination of whether or
not a voxel is declared active relies upon the methodology described in [2]. That
work discusses a general approach for random process analysis. The assumption
is that the dependency is distributed across many samples in the past, but may
be approximated using low-dimensional functions of the past. In this work we
examine a special case for which the methodology of [2] is appropriate.

We compare the new method to an approach based on the general linear
model (GLM) popularized by Friston et al [3] using data from three fMRI data
sets testing motor, auditory, and visual cortex activation.

2 Entropy Rates

We model the fMRI time series as a random process, denoted {Y } ≡ {y}∞0 ≡
{y0, y1, · · · } in which a sample yk statistically depends on the past values
{y}k−1

0 ≡ {y0, · · · , yk−1}, and perhaps on the present and past values of the
protocol time-series, {u}k

0 . This dependence is quantified by the information
theoretic notion of entropy rate, defined as [1]
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H (Y ) ≡ lim
N→∞

1
N + 1

h
(
{y}N

0

)
= lim

N→∞
h
(
yN | {y}N−1

0

)
(1)

where h( ) is differential entropy. Note that equality assumes the process is
stationary, however, the second form is also valid for a wide class of nonstationary
processes and is the form we use in practice. The entropy rate quantifies the
average uncertainty about future values conditioned on the past. We can also
condition on side information (e.g. the protocol) by

H (Y | {u}N
0 ) = lim

N→∞
h
(
yN | {y}N−1

0 , {u}N
0

)
(2)

It can be shown that, in general, conditioning reduces entropy, that is

H (Y | {u}N
0 ) ≤ H (Y ) (3)

with equality only when {y}N
0 and {u}N

0 are statistically independent [1]. Equa-
tions 1 and 2 imply that we must consider the joint densities over all samples of
the process which is generally intractable. However, we make two assumptions
that reduce the complexity. First, we assume the process depends on the finite
past, that is

h
(
yk| {y}k−1

0

)
= h

(
yk| {y}k−1

k−My

)
(4)

h
(
yk| {y}k−1

0 , {u}k
0

)
= h

(
yk| {y}k−1

k−My
, {u}k

k−Mu

)
(5)

limiting the dimensionality to My + Mu + 1. Furthermore, we assume the infor-
mation about yk in the samples {y}k−My

k−1 and {u}k−Mu

k can be summarized by
lower dimensional functions,

h
(
yk| {y}k−1

k−My

)
≈ h

(
yk|fa

(
{y}k−1

k−My

))
(6)

h
(
yk| {y}k−1

k−My
, {u}k

k−Mu

)
≈ h

(
yk|fa

(
{y}k−1

k−My

)
, fb

(
{u}k

k−Mu

))
(7)

where fa( ) and fb( ) are parameterized. Fisher et al [2] describe a generalized
approach for both learning the parameterized functions and then using them
to compute entropy rates. Note that when using the methodology of [2] the
approximation of equations 6 and 7 are close in the Kullback-Leibler sense and
thus consistent with a hypothesis testing framework [6]. For reasons of brevity
we shall only consider the class of linear predictive models.

2.1 Hypothesis Testing and Entropy Rates

For the moment we put aside the question of estimating the functional param-
eters to examine the relationship between hypothesis testing and entropy rates.
Consider the following hypothesis test.

H0 : yk ∼ pY (Yk| {y}N−1
0 )

H1 : yk ∼ pY |U (Yk| {y}N−1
0 , {u}N

0 )
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Hypothesis H0 states that the random process Y depends only on the past of
Y , while H1 states that the random process depends on the past of both Y and
U . We compute the log of the likelihood ratio

Tn =
n∑

k=1

log
(
pY |U (yk| {y}N−1

0 , {u}N
0 )
)
− log

(
pY (yk| {y}N−1

0 )
)

. (8)

It can be shown that [1]

lim
n→∞Tn = n

(
H (Y ) − H

(
Y | {u}N

0

))
= E {Tn} , (9)

consequently, the difference in entropy rates used as the activation statistic is
equivalent to the aforementioned hypothesis test. In practice we substitute the
Parzen density estimate and, as in equations 6 and 7, substitute functions fa( )
and fb( ) to summarize the dependency on the past.

The preceding analysis is similar to that presented in [5] which shows the
equivalence between a simpler hypothesis test and mutual information as the
test statistic. We note here that when the process is independent from sample to
sample and is dependent on the coincident (or a delayed) sample of the protocol
then the hypothesis test is equivalent to that described in [5]. In [8], the test was
performed for a range of delays modeling a type of hemodynamic response. Here,
since we consider past samples jointly this is not necessary and consequently
more general forms of the hemodynamic response are modeled. This will be
further elaborated in the experimental results section.

3 Modeling the Temporal Structure of fMRI Time-Series

We now discuss a method for estimating the time dependence of the fMRI time-
series yk on past samples of both yk and the protocol uk. We restrict ourselves
to linear functionals of past samples, a special case of the more general approach
described in [2]. Note the information theoretic principles play a role both in
quantifying the dependence of the voxel time-series on the protocol and in esti-
mating the parameters of the functions. Letting yk represent the time-series at
some voxel, we consider two signal components.

ya
k = −

My∑
i=1

aiy
a
k−i + nk yb

k =
Mu∑
i=0

biuk−i (10)

where nk is an i.i.d. noise sequence and uk is the protocol signal. We assume
that nk is independent of uk. The estimates of {ai} and {bi} should reflect this
assumption. This condition partially distinguishes our approach from standard
ARMA (auto-regressive moving-average) models. Consequently, ya

k is an AR
(auto-regressive) process with a random noise source while yb

k is a MA (moving-
average) process with the protocol as the input. The fMRI time-series is modeled
as the sum of these two signals.
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yk = ya
k + yb

k = ya
k +

Mu∑
i=0

biuk−i =
My∑
i=1

aiy
a
k−i + nk +

Mu∑
i=0

biuk−i (11)

Ordinarily, solving for ARMA parameters is a nonlinear optimzation problem.
However, since uk is known, the parameters can be obtained using linear least
squares estimation [7] with the additional constraint that nk is statistically inde-
pendent of uk. Furthermore, it can be shown for linear predictive models (such
as in equation 10) that the solution obtained by minimizing the squared error in
the prediction has the same expected value as that obtained by minimizing the
entropy rate (equations 6 and 7).

Standard least squares methods do not ensure the independence of nk and
uk, in general. If an active voxel obeys the model (even approximately) past
samples will contain some dependence on the protocol which will be transmitted
through the {ai} coefficients. That dependence must be removed so that we can
isolate contributions from uk and pass them only through the {bi} coefficients.
A straigtforward approximation is to solve for the coefficients sequentially.

{bi} = arg min
{b′i}

∑
k

(
yk −

Mu∑
i=0

b′iuk−i

)2

(12)

{ai} = arg min
{a′

i}

∑
k


yk − yb

k −
My∑
i=1

a′
iy

a
k−i




2

(13)

To the degree that the model order is correct, predictions of yk from ya
k will be

independent of yb
k. Furthermore, the entropy rates of the processes are equivalent

to the entropy of the error residuals (with and without the protocol contribution).
That is, under the model,

H(Y ) = h(yk − ya
k) and H(Y | {u}k

0) = h(yk − ya
k − yb

k), (14)

where (yk − ya
k) and (yk − ya

k − yb
k) are our estimates of nk under the two

hypotheses. As follows from equation 8, the difference of these entropies form
our ARMA-based entropy rate statistic (ER).

Note that the MA model yb
k is the same model implicit in a GLM approach

when the basis is Mu + 1 shifted versions of the protocol signal. This is only the
case when we restrict ourselves to linear functions of the past, and represents a
principled way to choose a GLM design matrix and to include noise modeling.
In Section 4, we contrast the ER-test to a classical F-test that approximates
incorporating our modified ARMA model into a GLM design matrix.

4 Empirical Results and Discussion

We present results on three fMRI datasets, whose respective protocols were
designed to activate the motor cortex (dominant hand movement protocol), au-
ditory cortex (verb generation protocol), and visual cortex (visual stimulation
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with alternating checkerboard pattern). Each data set contains 60 whole brain
acquisitions taken three seconds apart, each consisting of 21 coronal slices. Each
protocol consists of a 30 second rest phase followed by a 30 second task phase
repeated three times. In all cases, the MA and AR systems are sixth-order.

We compare the two versions of the new method to a baseline GLM (the
protocol signal is the basis) and MI [8]. The first estimates the entropy rates
nonparametrically (ER) while the second assumes Gaussian statistics, whereby
the difference in entropy rates is equivalent to a variance ratio (an F-test, and in
effect, a GLM with our ARMA model in the design matrix). For each protocol
the GLM threshold was set so that the number and location of activations was
consistent with the protocol. In the comparison methods, the thresholds were set
such that all of the GLM activations were detected. This resulted in additional
detections, some spurious and some not. Results for the visual cortex are shown
in Figure 1. Visual inspection of the signals of the new activations in the ER maps
(contrast Figure 1 (a) and (c)) suggested a relationship to the protocol. Figures 2
and 3 present four such activations, from visual, auditory, and motor protocols,
which the GLM only detects when its threshold is siginificantly lowered. The
lowered GLM threshold produced many additional detections as well. This is
illustrated in Figure 4, which contrasts the detections in slice 6 before and after
the threshold change. In this particular case, all activations detected with the
lower threshold (Figure 4(d)) had very small MI and ER values and were judged
to be spurious by inspection. One such false positive is shown in Figure 5.

We found that the ARMA-based F-statistic and the GLM statistic are both
small for the active voxels plotted in Figure 2 (a) and (e). This is likely due
to their inherent assumption of Gaussianity. Figure 2 (c) and (g) suggests a
bi-modal error density for these cases. The ER statistic does not make this
assumption and can more robustly detect these depedencies on the protocol.

The hemodynamic response is modeled implicitly by the MA term in the
model. When calculating MI and GLM statistics, this delay is found by searching
a range of delays. Figure 2(b) shows the MA signal estimate as a solid line
overlying the dotted line representing the protocol period (and the fMRI signal,
dashed) and is slightly delayed. Note that this delay corresponds roughly to the
centroid or peak of the MA weights shown in Figure 2(d), which is between 2 and
3 delays. The active voxel shown in Figure 3 is one whose MI value erroneously
indicates a vanishing dependency on the protocol, but which ER accurately
detects. We have observed that MI and GLM poorly detect signals like this one,
which are characterized by high-amplitude, high-frequency variation (relative to
the protocol period).

While these results are not exhaustive, we feel that they are indicative of the
potential of the method, particularly in the cases where it is difficult to model
phenomenon á priori.
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(a) GLM (b) MI (c) ARMA ER (d) ARMA F-test

Fig. 1. Comparison of fMRI analysis results from visual experiments (2nd slice)
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Fig. 2. The “partial-responders” (a,e) appear to be cases in which the subject did
not respond during all task phases (visual - top, auditory - bottom). Consequently, the
error residuals exhibit a bimodal density (solid lines in (c,g)). The residual error density
using only past signal values (dotted lines) has lower entropy, but similar variance, so
ER detects the lower entropy rate, while ARMA F-test and baseline GLM do not.
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Fig. 3. The ER statistic finds dependencies on the protocol that was apparently hidden
from both MI and GLM by the low SNR in both these signals. (a)-(d): A voxel in the
visual protocol (e)-(h): A voxel in the motor protocol
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(a) GLM (original) (b) MI (c) ARMA ER (d) GLM (lower)

Fig. 4. Visual experiment, slice 6: spurious GLM detections due to lowered threshold
which do not occur in ER result.
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Fig. 5. A voxel from the 6th fMRI slice during a visual experiment, erroneously de-
tected by the GLM with a lowered threshold, but with a vanishing MI or ER value
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