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Abstract. Within the scope of three-dimensional brain imaging we pro-
pose an inter-individual fusion scheme to register functional activations
relatively to anatomical cortical structures, the sulci. This approach is
local and non-linear. It relies on a statistical sulci shape model account-
ing for the inter-individual variability of a population of subjects, and
providing deformation modes relatively to a reference shape (a mean
sulcus). The deformation field obtained between a given sulcus and the
reference sulcus is extended to a neighborhood of the given sulcus by
using the thin-plate spline interpolation. It is then applied to the func-
tional activations associated with this sulcus. This approach is compared
with other classical matching methods.

1 Introduction

In the context of inter-individual normalization, we address in this paper the
registration of 3D anatomical and functional data, i.e. data from various sub-
jects and/or acquired according to various modalities (e.g. magnetic resonance
imaging (MRI) for anatomical data, magnetoencephalography (MEG) or func-
tional magnetic resonance imaging (fMRI) for functional data). We intend to
grasp the high inter-individual variability implied by such data with a shape
model. Deformable models are a powerful tool to image analysis [1]. Some of
them use modal analysis techniques lying on a physical approach [2], [3] or on a
statistical approach [4], [5]. In this kind of model, adequation between model and
data is improved by introducing prior knowledge thanks to a training set. These
models are able not only to represent the shape of an object but also the way it
can vary. They are generally used for segmentation purpose. Within the frame-
work of anatomo-functional normalization, it is interesting to use the modeling
of deformations to register scattered data associated with modeled structures
of interest. Thus to register functional activations we rely on the modeling of
anatomical structures, the sulci, which are relevant landmarks for such purpose;
the registration being finally achieved thanks to a technique based on the thin-
plate spline interpolation [6], [7].
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In Sect. 2 we describe the construction of the statistical model of cortical sulci
by learning a set of shapes. The training stage is first detailed, then we present
the statistical analysis we use, i.e the principal component analysis (PCA). In
Sect. 3 we present the thin-plate spline method and its use combined to the model
exploitation in the local and non-linear registration of functional activations,
MEG dipoles. We compare this approach with a local rigid approach and with
global methods (rigid and non-rigid).

2 Statistical Model of Cortical Sulci

2.1 Training

Cortical sulci are anatomical structures whose shape is complex. We dispose of
a parametric representation of these shapes of interest [8] describing them by
their median surface. This one is extracted from MRI volumes by the “active
ribbon” method and is eventually modeled by a cubic B-spline surface, which is
well adapted to model free form objects. The spline, parameterized by u and v, is
described by nbp knots and nbc = nbc u∗nbc v control points where nbc u (resp.
nbc v) is the number of control points in the direction associated with parameter
u (resp. v). In the case of sulci, the parametric direction u represents the length
of the sulcus and the direction v its depth. Giving nbc control points completely
defines the sulcal surface. Consequently, we can represent a sulcus by the vector
of its knots or its control points. The ratio nbc/nbp defines the smoothing factor:
the smaller this ratio, the smoother the surface (we have chosen nbc/nbp = 1/24).
The main advantages to use control points are their lower number and their
complete representation of each surface.

The statistical technique used here needs to establish the point to point
correspondences between all shapes of the training set. This implies a resampling
stage so that the sulci have the same number of points and a registration stage
in order to express them in the same system of reference. Each sulcus is initially
expressed in its image reference system which is different from one patient to
another. The idea is to associate its own system of reference with each sulcus,
built so that it is common to all sulci. We call it “local system of reference”. It
is then just needed to determine the rigid transformation (rotation+translation)
aligning all local systems of axes and to apply it to the associated shapes.

Let Rs(Os,us,vs,ws) be the system of reference local to the sulcus. The
axes us, vs and ws are defined as the axes of inertia of the sulcal surface, and
are decided to be so that us follows the length of the sulcus, vs its depth and
ws its normal. This discrimination between the 3 axes is first carried out by
considering that us (resp. vs) is the axis of inertia the “most collinear” with the
nbc u (resp. nbc v) pseudo-parallel directions; each of them being defined by the
two extremities of a sulcus’ line in direction u (resp. v). Then ws is obtained by
vector product: ws = (us∧vs). At last the origin Os is the center of mass of the
sulcus.

The sulci have now to be expressed in their local systems of reference. It
amounts to determining, for each sulcus, the matrix M defining the change of
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basis from the local system of reference Rs towards the image system of re-
ference, let it be R(O,u,v,w). Let R and t be the rotation matrix and the
translation vector of the inverse change of basis M−1 (i.e. from R towards Rs).
Then in homogeneous coordinates:

R =
(
us vs ws

)
, t = −−→

OOs and M−1 =
(

R t
0 0 0 1

)

Since R is orthogonal: M =
(

RT −RT t
0 0 0 1

)
.

Applying this rigid transformation to all the points of each sulcus aligns the
training set as illustrated on Fig. 1a. Since the image data are acquired to the
same scale, we decided not to perform any homothety. First, it enables to avoid
one more transformation, then the inter-individual size variation will thus be
grasped by the shape model.

The next stage consists in resampling the sulci of the training set. We re-
sample the elements of the training population on the one which has the most
sample points, spline properties ensuring that the original shapes are preserved.
Once the sulci are resampled and aligned, the matching is performed by just
assigning control point to control point according to their curvilinear abscissa.

a b

Fig. 1. a) A side view of a database of 18 left central sulci aligned in the local
system of reference. b) A side view of the mean left central sulcus of this database.

2.2 Statistical Analysis of Deformations

The statistical analysis of the training set leads to a modeling of cortical sulci and
of their variations. The model captures the shape variability observed within the
training set. Indeed, the statistical analysis reveals the main modes of variation
relative to a prototype shape, representative of the considered class. We use a
principal component analysis which enables to represent data in a new basis,
orthogonal, and which suppresses the redundancy of information. Moreover, this
analysis enables a modal approximation.

Principal Component Analysis. Let P be the training population made up
of N elements, xi ∈ P a shape, x̄ the mean shape on P , C the covariance
matrix. A shape xi is represented by the vector of control points of the spline
which models the median surface of the sulcus:

xi = (xi1 , yi1 , zi1 , . . . , xin , yin , zin)
T with n = nbc .

The mean shape, representative of the studied class, and the covariance matrix
are given by:
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x̄ =
1
N

N∑
i=1

xi and C =
1
N

N∑
i=1

dxidxT
i with dxi = xi − x̄ .

Diagonalizing the covariance matrix C provides the new modal basis Φ:

C = ΦΛΦT , Λ = diag(λ1, . . . , λ3n) with λ1 ≥ λ2 ≥ . . . ≥ λ3n .

Then any shape x can be written: x = x̄ +Φb where b = (b1, . . . , b3n)T is the
vector of modal amplitudes of deformation and (−Φb) corresponds to the defor-
mation vectors in each point of x towards the mean shape. Since the eigenvalue
λi is the variance explained by the ith mode, a large part of the variability can
be explained by retaining only the first m modes. The value m is chosen so that∑m

i=1 λi, the variance explained by the first m modes, represents a proportion,
sufficiently important of the whole variance: λT =

∑3n
i=1 λi. Retaining only m

modes enables us to achieve a modal approximation:
{
x = x̄+Φmbm

bm = Φm
T (x− x̄)

where Φm is a submatrix of Φ containing the first m eigenvectors of C, thus
defining the modal approximation basis. The vector bm = (b1, . . . , bm)T repre-
sents a shape in the m-dimensional space defined by the principal components.
This space is interesting since it is of lower dimension (dim m). However, bm

must be constrained in order to represent an “allowable” shape (i.e. a shape
consistent with the learnt shapes). Given the assumption that the distribution
of vectors xi is normally distributed (i.e. gaussian distribution), the range of
variability of each bi is typically such as: −3

√
λi ≤ bi ≤ +3

√
λi.

Results. Several tests have been carried out by making the cardinal of the
training population vary (up to 85 sulci) and also by changing the type of sulci
(central right and left sulcus, lateral sulcus, superior frontal sulcus, . . . ). We
present the results obtained on a training set made up of the 18 left central
sulci registered in the previous stage. Figure 2 shows the predominance of the
first modes. Indeed, the first 5 modes explain a large part of the total variation
(about 70%). The first mode explains on its own almost 30% of the total vari-
ation (whereas a sulcus is described by 104 control points, that is to say 312

Fig. 2. Cumulative variance according to the number of principal components
retained.
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a b

Fig. 3. a) Variations of the first mode around the mean sulcus, −3
√

λ1 ≤ b1 ≤
+3

√
λ1. b) Variations of the 15th mode around the mean sulcus,−3

√
λ15 ≤ b15 ≤

+3
√

λ15.

variables, and by more than 8000 variables if knots are considered). The statisti-
cal modeling seems to be appropriate to express the shapes and the variations in
a compact way. Figure 3a shows the variations due to the first mode. They are
mainly relative to the length and to the torsion of the sulcus. On the contrary,
Fig. 3b illustrates the minor influence of the 15th mode: the deformations are
hardly distinct, all the sulci are almost superimposed to the mean shape.

3 Deformation Fields and Non-linear Registration

The deformation field (−Φmbm) obtained between a given sulcus and the refer-
ence sulcus (the mean sulcus in our case) can be extended to a local neighborhood
of the considered sulcus by using the thin-plate spline interpolation [6]. It can
then be applied to any object associated with this sulcus. We take advantage
of this extension of the deformation field (−Φmbm) to register scattered data
located in the left central sulcus area towards a mean space.

3.1 The Thin-Plate Spline Method

The use of thin-plate spline interpolation for registration purpose in medical
imaging was first proposed by Bookstein. In [6], he proposes an algebraic ap-
proach to describe deformations specified by two sets of corresponding points.
This method provides an interpolation function f which maps one of the two sets
of corresponding points, the source set, onto the other one, the target set. More-
over, the function f is defined in some neighborhood of the set of source points
so that it can be applied to a point in the source space to find its homologous
in the target space.

Let P = {Pi(xi, yi, zi), i = 1, . . . , n} be the set of source points in the Eu-
clidean space, and V = {Vi = (x′

i, y
′
i, z

′
i), i = 1, . . . , n} the set of target points.

The set P describes a shape x, expressed by x̄+Φmbm according to our model.
Let rij = |Pi − Pj | be the Euclidean distance between two source points Pi and
Pj . Then the function f is the sum of two terms: an affine part which represents
its behavior at infinity, and a second part which is asymptotically flat:

f(x, y, z) = a1 + axx + ayy + azz +
n∑

j=1

wjU(|Pj − (x, y, z)|) (1)
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where

– the basis function U is the fundamental solution of the biharmonic equation
∆2U = δ(0, 0), δ being the Kronecker’s function. It can be shown [7] that
the equation of a thin uniform metal plate originally flat and now bent by
vertical displacements is directly related to the biharmonic equation. In 3D
the function U is U(r) = |r|;

– the coefficients a = (a1, ax, ay, az)T and w = (w1, w2, . . . , wn)T are obtained
by solving the linear system:

{
Kw+Pa = v
PTw = 0 where P=


1 x1 y1 z1
...

...
...

...
1 xn yn zn


 ,

K is a n × n matrix having the general term (U(rij)), and v is the vector
of one coordinate of the target set (e.g. v = (x′

1, . . . , x
′
n), what implies that

(1) must be declined for fx(x, y, z), fy(x, y, z), fz(x, y, z)).

Regarding the target set as the mean shape x̄, the deformation field (−Φmbm)
is then represented by the elements of (w | a), and it is extended outside the
source shape x thanks to the function f .

3.2 Results

The statistical modeling of anatomical structures such as cortical sulci can now
be used to register functional activations in a non-linear and local way by us-
ing the method described above. We first detail the results obtained through
this method (NLL), and second we compare this approach with the following
methods:

– a global rigid method (GR): the registration by maximization of mutual
information [9], [10];

– a global piecewise affine registration (PS): the Talairach Proportional Squar-
ing [11];

– a non-linear global registration (NLG): a method based on optical flow and
a robust optimization scheme [12];

– a local rigid method (LR): the local registration realized through the trans-
formation described by the matrix M (see Sect. 2.1). This method will be
evoked over all this part since it is a constant in all methods.

For all methods, the functional data to register are MEG dipoles correspond-
ing to a somatosensory activation of right hand fingers (thumb, index, little
finger) performed for 15 subjects of the 18 subjects of our database (see Sect. 2).
MEG current dipoles have been reconstructed using a spatiotemporal algorithm
[13] and selected by choosing the most significant one in the 45+/-15 ms window.
These functional activations are located in the central sulcus area.
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a b c

d e f

Fig. 4. Registration of MEG dipoles (somatosensory activation of the thumb):
the sulcus is the mean left central sulcus. a) Method LR: the dipoles are rigidly
registered. b), c) Method NLL: the dipoles are registered via the deformation
field , b) m = 17, c) m = 5. d) Method GR. e) Method PS. f) Method NLG.

Method NLL. We apply the thin-plate spline method to merge anatomical and
functional information in the central sulcus mean space. First, we rigidly register
each dipole towards the local space by applying the transformation described by
the corresponding matrix M (see Sect. 2), i.e. by using the LR method. Then,
for each subject, we compute the “field” (w | a) between the left central sulcus
of this subject and the mean sulcus. We apply it to the 3 dipoles of this subject,
the field (−Φmbm) being computed with all the modes (m = 17). Figure 4b
shows that dipoles gather around the plane of the mean sulcus. Moreover, the
covariance along x, y and particularly z is considerably reduced (see Table 1,
first row). We present a second test in which we consider only 5 modes in the
construction of (−Φmbm). This approximation smoothes the sulcus and discards
minor modes possibly resulting from potential segmentation errors of initial data.
Results are presented Fig. 4c and Table 1. The gathering towards the mean plane
and the decrease of the covariance are less than the ones of the previous test,
but still significant.

Table 1. The covariance along x, y and z of MEG dipoles for somatosensory
activations (thumb, index, little finger) after local rigid registration (LR), thin-
plate splines interpolation based registration (NLL) for m = 17 and m = 5, and
global registration (methods GR, PS, NLG).

LR NLL (m = 17) NLL (m = 5)

thumb 90.8 25.41 69.99 77.33 21.98 7.3 80.88 20.39 16.67

index finger 90.89 31.58 71.85 85.46 26.25 5.96 82.39 26.99 11.81

little finger 97.79 33.36 81.94 90.18 34.26 8.05 88.29 32.99 21.91

GR PS NLG

thumb 92.01 22.93 111.18 76.67 16.98 69.21 81.56 25.37 98.11

index finger 94.13 27.75 97.98 83.31 25.26 69.41 86.52 38.51 90.01

little finger 99.39 28.68 111.31 89.36 22.93 62.83 91.69 39.31 102.99
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Comparison. We apply each of the 3 global methods to MEG data; then, for
comparison purpose, we place the resulting dipoles in the local space via the
LR method. Figure 4 shows that method NLL gathers the dipoles around the
reference mean sulcus more than the other ones. This visual result is confirmed by
computing the dipole localization covariance along each axis (see Table 1). Global
methods, linear or not, lead to quite similar dispersion. However method PS leads
to inferior covariances than method GR and NLG. This may be explained since
method PS is by construction relevant and precise in the central sulcus area.
To light the significant difference observed between global methods and method
NLL we may note that global methods GR, PS and NLG rely more on luminance
information than on anatomical information, whereas the NLL method is fully
based on anatomical constraints. That point may be a motivation to introduce
local anatomical contraints in global registration process [14], [15].

4 Conclusion

We have presented a statistical model of cortical sulci built by performing a
modal analysis (PCA) on a training population. This model accounts for the
deformations of the sulci between individuals, and the achieved tests show the
relevance of the obtained deformation modes. This modeling has the advantage
to lie in a “mean space”. The sulci thus modeled can be used as landmarks
in the registration of MEG dipoles towards the mean space. This registration is
carried out via the thin-plate spline method. Results show a significant difference
between this local and non-linear method and the global methods we presented.
Interpretation remains delicate all the more so as no ground truth is available.
Finally, the registration framework presented here is general and not restricted
to MEG activities.
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