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Abstract. This paper describes a new segmentation technique for multi-
dimensional dynamic data. One example of such data is a perfusion se-
quence where a number of 3D MRI volumes shows the dynamics of a
contrast agent inside the kidney or heart at end-diastole. We assume that
the volumes are registered. If not, we register consecutive volumes via
mutual information maximization. The sequence of n registered volumes
is regarded as a single volume where each voxel holds an n-dimensional
vector of intensities, or intensity curve. Our approach is to segment this
volume directly based on voxels intensity curves using a generalization of
the graph cut techniques in [7, 2]. These techniques use a spatial Markov
model to describe correlations between voxels. Our contribution is in
introducing a temporal Markov model to describe the desired dynamic
properties of segments. Graph cuts obtain a globally optimal segmen-
tation with the best balance between boundary and regional properties
among all segmentations satisfying user placed hard constraints. Flexi-
bility, coherent theoretical formulation, and the possibility of a globally
optimal solution are attractive features of our method that gracefully
handles even low quality data. We demonstrate results for 3D kidney
and 2D heart perfusion sequences.

1 Introduction

Dynamic data show how the intensity of different tissues changes with time.
Typical examples of dynamic data are perfusion sequences of heart, brain, kid-
ney, etc. The observed voxel intensity changes as a contrast agent propagates
through an organ. Such dynamic contrast-enhanced data are commonly used
in medicine to analyze blood circulation and to examine proper functioning of
organs. Functional MR of brains is another example of dynamic data where in-
tensity of certain groups of neurons change while a patient performs given tasks.
Dynamic data reveal geometric structure of an organ in a fashion distinct from
most other types of data in computer vision; intensity dynamics vary in different
parts of the organ while no visible motion takes place.

In most applications segmentation is a necessary step to analyze dynamic
data. Segmentation is a process in which image elements representing the same
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tissue class are grouped together and labeled. Such tissue classification is used
for monitoring of volume changes (atrophy, tumor growth), 3D rendering and
visualization, measurement of tracer concentration etc.

The list of most commonly used segmentation techniques includes threshold-
ing, region growing, split-and-merge, segmentation by clustering, snakes, level
set methods, and others. Multi-dimensional dynamic data presents significant
challenges for segmentation techniques. Each volume of a dynamic sequence has
to be quickly obtained over a short period of time. As a result, the data sets
may have very low resolution with strong “partial voluming” effects. Certain
perfusion applications [11, 13] use low doses of contrast-enhancing agent which
may further reduce the contrast in each volume. Many segmentation techniques
can easily fail by “leaking” through a large number of weak object boundaries.

In this paper we present a segmentation technique that addresses the difficul-
ties of dynamic data. Our main idea is as follows. Note that a dynamic sequence
of n volumes with grey-level data describes the same geometric structures. Nor-
mally, the sequence is either registered or can be registered. If necessary, we
obtain such registration via mutual information maximization between pairs of
consecutive volumes. The registered dynamic sequence is treated as a single vol-
ume where each voxel has an n-dimensional intensity vector, i.e. an intensity
curve. Then we directly segment this single volume of intensity curves. We ap-
proach this potentially treacherous multi-dimensional segmentation problem via
graph cut methods [7, 2] that offer a solid theoretical framework based on poste-
rior energy minimization. These methods model correlation between voxels using
spatial Markov models.

The graph cut method in [7] allows us to find a globally optimal binary seg-
mentation in case of the Potts energy that combines certain regional and bound-
ary properties of segments. Exact minimization of an appropriate energy solves
many of the problems due to low resolution and weak contrast. The technique
works on images or volumes. The method in [2] adds a possibility of intuitive
user inputs to impose hard constraints for energy minimization. These hard
constraints give an efficient way to correct any imperfections in the results. In
practice, segmentation imperfections are almost guaranteed in case of low reso-
lution/contrast dynamic data and any completely automatic technique is very
likely to fail in such cases.

The graph based energy minimization techniques in [7, 2] use data gradients
to describe boundary properties of segments. The desirable regional properties
of segments are summarized by intensity distributions or histograms Pr(I|L)
for all regions (labels L) of interest. There are certain difficulties in applying
these methods to a volume of intensity curves that we get with dynamic data.
In particular, each voxel has n-dimensional intensity vector rather than a simple
gray-scale value. The histograms Pr(I|L) become very difficult to handle numeri-
cally when the dimension of I is larger than 4 or 5. Given that a typical perfusion
sequence can easily have n greater than 15 or more, we introduced a temporal
Markov model for intensity curves. In fact, this model effectively simplifies the
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n-dimensional histograms Pr(I|L) into a product of n 2-dimensional transitional
histograms.

Graph based energy minimization methods are quite flexible, easy to imple-
ment, work for N-dimensional volumes, and generate globally optimal segmenta-
tion that can have arbitrary topological properties. These methods are used in a
large number of applications previously reported in computer vision literature,
e.g. [12, 9, 1, 16, 14, 15]. In the context of dynamic medical data, [10] demon-
strated that the graph based method in [7] can be used to segment functional
MRI of brains. They implicitly assume that each intensity curve is a sequence of
independent observations. The regional properties of segments are described by
mutual information between intensity curves and the time-line of “tasks” given
to a patient. In fact, their assumption of independence strips intensity curves
of most of its useful “dynamic” content. Our Markov assumption is much more
general and allows a wider scope of problems with dynamic data.

The rest of the paper is structured as follows. In Section 2 we provide back-
ground information on energy minimization and graph cut techniques that we
use. Details of our segmentation method are described in Section 3. In particu-
lar, our temporal Markov model for intensity curves is explained in Section 3.2.
In Section 4 we show experimental results for 2D heart and 3D kidney perfusion
sequences.

2 Background on Potts Energy Minimization

Greig et. al. [7] was first to discover that powerful graph cut algorithms from
combinatorial optimization [6, 4] can be used to minimize certain important
energy functions in vision. The energies addressed by Greig et. al. and by later
graph based methods (e.g. [9, 1, 2]) can be represented as a posterior energy in
a standard MAP-MRF1 framework that assumes a spatial Markov property for
a volume labeling. The typical a posteriori energy function is

E(L) =
∑
p∈P

Dp(Lp) +
∑

(p,q)∈N
Vp,q(Lp, Lq), (1)

where L = {Lp |p ∈ P} is a labeling (segmentation) of volume P , Dp(·) is a data
term, Vp,q is an interaction potential, and N is a set of all pairs of neighbor-
ing pixels/voxels. The first and the second terms in (1) represent regional and
boundary properties of segments, correspondingly.

Greig et.al. developed a technique based on graph cuts that gives a globally
optimal binary segmentation L in case of the Potts model of interaction in (1):

Vp,q(Lp, Lq) = K(p,q) · T (Lp �= Lq) (2)

where K(p,q) is a discontinuity penalty and T (·) is 1 if condition inside the
parenthesis is true and 0 otherwise. This method was generalized in [2] to include

1 Maximum A Posteriori estimation of a Markov Random Field.
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additional hard constraints (seeds) that may be placed by a user. The same seeds
can also be used as sample points to summarize regional properties of desirable
segments. In [2] such properties are represented by intensity histograms Pr(I|L)
for each possible label value L. The underlying MAP-MRF formulation in [7, 2]
suggests the data penalty function based on the likelihood Pr(Ip|Lp) of intensity
Ip at pixel p :

Dp(Lp) = − ln Pr(Ip|Lp). (3)

A fast implementation of graph based energy minimization methods in [7, 2] is
possible via min-cut/max flow algorithm discussed in [3].

3 Our Technique for Dynamic Data

Here we provide details of our segmentation technique. In Section 3.1 we describe
our registration method in case when original dynamic sequence can not be
viewed as “perfectly” registered. After registration we treat dynamic sequence
of n volumes as a single volume of intensity curves Ip = {It

p|1 ≤ t ≤ n}. We
use graph cut techniques in [7, 2] to find a globally optimal segmentation L =
{Lp|p ∈ P} where each voxel label Lp is either “object” or “background”. Our
energy is given by equations (1), (2), and (3). The data term, Dp in (3), is set by
assuming a Markov property for the distributions Pr(Ip|Lp) of intensity curves.
This Markov model is explained in Section 3.2. Our choice of parameters for the
Potts interaction penalty, Vp,q in (2), is explained in Section 3.3.

3.1 Mutual Information Based Registration

Let F = {F1, F2, . . . , Fn} denote the random field from which one of the vol-
umes, called the float volume, is sampled. Similarly, let R = {R1, R2, . . . , Rm}
be the random field from which the other volume, called the reference volume,
is sampled. Assuming that the random variables {F1, F2, . . . , Fn} are indepen-
dently and identically distributed (i.i.d.), let F be the random variable which
represents the voxel intensities in the float volume. Similarly, assuming that
{R1, R2, . . . , Rm} are i.i.d, let R be the random variable representing the voxel
intensities in the reference volume. Then the mutual information I(F, R) between
the two random variables F and R with marginal probability density functions
PF (f), PR(r) and joint probability density function PF,R(f, r) is defined to be

I(F, R) =
∑

f,r PF,R(f, r) log2
(

PF,R(f,r)
PF (f) × PR(r)

)
.

Let α denote the set of rigid transformation parameters, three translations
and three rotations, by which the float volume is being transformed. Then the
probability density function of the transformed float volume, as a function of
α is denoted as PF,α(f). Similarly, the joint density function will be denoted
by PF,R,α(f, r). The probability density function, PR,α(r), is a function of α
because we are evaluating the mutual information on the overlapping region of
the two volumes. The various joint and marginal probability density functions
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are estimated by using the Parzen window method [5]. Using these notations,
the mutual information, Iα(F, R), is evaluated as a function of α as

Iα(F, R) =
∑
f,r

PF,R,α(f, r) log2

(
PF,R,α(f, r)

PF,α(f) × PR,α(r)

)
. (4)

The optimal set of transformation parameters α, which maximize Iα(F, R), are
then found using the stochastic gradient descent approach [8, 17].

3.2 Temporal Markov Model for Intensity Curves

If we have dynamic sequence of n volumes then intensity Ip at voxel p becomes
an n-dimensional vector Ip = (I1

p , . . . , In
p ), that we call an intensity curve. Re-

member that the general n-dimensional distribution Pr(Ip|Lp) in (3) cannot be
handled in practice for n greater than 4 or 5 and additional assumptions should
be made about intensity curves Ip.

Assuming independence of {It
p} for 1 ≤ t ≤ n reduces Pr(Ip|Lp) to a product

of n one dimensional distributions Pr(It
p|Lp) and may look as an attractive solu-

tion. In fact, this can significantly oversimplify dynamic information contained
in intensity curves Ip. For example, information on “continuity” between It

p for
consecutive values of t is completely lost if It

p are treated as independent. If an
object of interest contains several types of tissue with different intensity dynam-
ics then independence based probability model can assign high probability to a
random curve that “jumps” between curves representing these different tissues.
In such a case probability distribution is not very meaningful.

In our formulation we make a more general assumption that intensity curves
Ip have a Markov property. This property means that for any time instance t
the conditional distribution of intensity It

p given the whole history of intensities
I1
p , . . . , It−1

p at the previous time instances, in fact, depends only on the most
recent observation It−1

p , i.e. Pr(It
p|I1

p , . . . , It−1
p ) = Pr(It

p|It−1
p ). This assumption

is quite reasonable in the context of dynamic medical data like perfusion or func-
tional MR. It is easy to show that the Markov property implies that the joint
distribution Pr(Ip|Lp) can be written as a product of two-dimensional distribu-
tions

Pr(Ip|Lp) = Pr(I1
p |Lp) ·

n∏
t=2

Pr(It
p|It−1

p , Lp). (5)

From computational point of view, two dimensional histograms Pr(It
p|It−1

p , Lp)
are quite manageable. We use equation (5) to describe desirable “dynamical”
properties of segments summarized in the data term (3) of energy (1).

3.3 Setting Up the Potts Interactions

It remains to explain our choice of parameters for the Potts interaction term
(2) of energy (1). We can choose the discontinuity penalty K(p,q) to vary over
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different pairs of neighboring voxels. The goal is to encourage segmentation dis-
continuities where image gradient forces are large and to discourage discontinu-
ities inside regions with low texture. One typical example of such discontinuity
penalty is used in a number of graph based techniques in vision

K(p,q) = λ · exp
(
−||Ip − Iq||2

σ2

)
.

The fact that Ip is an n-dimensional vector makes one interpret || · || as a vector
norm, e.g. Euclidean norm.

In general, we can have K(p,q) �= K(q,p). In the context of gray-scale volume
segmentation, [2] showed that this can help to differentiate between the bound-
ary from “bright” to “dark” and the boundary from “dark” to “bright”. If the
properties of the object-to-background boundary are known this may help to
draw the boundary in the right place. For multi-dimensional intensity curves Ip

we can use asymmetrical function

K(p,q) = β · (C(Ip)− C(Iq)) + λ · exp
(
−||Ip − Iq ||2

σ2

)
.

The scalar function C(·) can represent, for example, a “center of mass” of the
corresponding curve, or its average intensity, or any other property of intensity
curve that can characterize the desirable properties of the object-to-background
segmentation boundary.

4 Experimental Results

We have two choices when estimating the histograms/distributions (5) for object
and background intensity dynamics. We can use some historic histograms that
were “learned” from intensity curves in the previous segmentation/classification
experiments. In this case the initial segmentation can be computed automati-
cally and additional user placed seeds (hard constraints) would be needed only
to correct imperfections, if any. Such a version can be created for a specific
application where the data does not vary too much.

Here we present results for a more flexible alternative approach that can
be used to segment a variety of data sets. A user places seeds even for initial
segmentation. These seeds indicate a few voxels that he is certain to be object
(red seeds) or background (blue seeds). Similar to [2] we make a dual use of these
seeds. First, they work as hard constraints for energy minimization. Second,
they give an “expert” sample of intensity curves for object and background.
These samples are used to set the histograms in equation (5). Then, an optimal
segmentation can be computed. Any imperfections can be still efficiently removed
by placing additional correcting seeds (hard constraints). Normally, the results
are robust and do not depend on exact positioning of seeds. Below we show some
of the results for 2D heart and 3D kidney perfusion data sequences.

In Figure 1(a-d) we show a 2D segmentation example for a single slice of
perfusion data of heart at end-diastole. The sequence of 35 images was well
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(a) Original heart perfusion data (2D) at time instances 2, 10, and 18 seconds.

(b) Left ventricle (c) Left and right ventricles (d) Multi-label Results

(e) Slice 4 of original kidney perfusion data (3D)
at time instances 0, 15, and 240 seconds.

(f) Results (slice 4)

(g) Slice 8 of original kidney perfusion data (3D)
at time instances 0, 15, and 240 seconds.

(h) Results (slice 8)

Fig. 1. 2D (heart) and 3D (kidney) examples of dynamic data segmentation.
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registered and MI based registration (Section 3.1) was not necessary. In separate
experiments we segment the left ventricle alone (b) and both the left and the
right ventricles together (c). The segmentation results in (b) and (c) are shown by
highlighting the object and background segments with, correspondingly, red and
blue colors. Note that multi-label segmentation is possible if the method is used
iteratively. An additional binary segmentation can separate the left and the right
ventricles starting from the results in (c). The resulting multi-label (red, blue,
black) segmentation is shown in (d). All results are obtain in under 10 seconds
including time that it takes a user to place seeds (Pentium III, 333MHz).

In Figure 1(e-h) we show an example of kidney perfusion data (a sequence of
18 volumes of size 100× 100× 17). The original sequence requires registration.
The resolution in each volume is 1 × 1 × 3.6 mm and there are severe defects
due to partial voluming. The goal is to segment the cortex, the medulla, and
the collecting system of the kidney. Given nontrivial topological properties of the
tissues and extremely poor data quality (to date, the best possible) no automatic
segmentation seems possible and the use of an interactive technique looks very
appropriate.

Registration using MI maximization takes about 3-4 minutes. Then we ob-
tain a multi-label segmentation in three iterations. First, the whole kidney is
separated from the background. Then we separate the medulla versus the cortex
and the collecting system. The last step is to cut the collecting system from
the cortex. Each iteration takes around one minute (50% user input and 50%
computation). The seeds were placed in two or three (out of 17) slices in the
volume. In (f) and (h) of Figure 1 we show 3D segmentation results. We use
“red” for cortex, “blue” for medulla, “green” for collecting system, and “black”
for background.
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