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proposed framework supports multichannel MRI input, adaptive and unsupervised 3D
segmentation based on Gibbs-Markov random fields (GRF-MRF). It accounts for the
piecewise contiguity of brain regions (WM, GM) and, in a certain amount, for
intensity nonuniformity without being dependent upon any specific initialization.

Markov Random Field (MRF) models were used with brain MR images in an
important number of works to add spatial smoothness into the process of image
segmentation [1-9]. These works reported that adding an explicit, local and low-level
tissue-contiguity model within the segmentation framework could consistently
improve the quality of the segmentation, especially in regions with low signal to noise
ratio or corrupted by a strong white (salt and pepper) noise. However, these works did
not identically address all the important issues. These issues are parameter estimation,
cluster validation, problem dimensionality (MRI input channels, 2D or 3D
implementation), the use of mixture models for partial volume effect correction, and
whether the model accounts for intensity nonuniformity. In this contribution, we
particularly stress on the integration of an MRF model within a completely
unsupervised segmentation scheme. We briefly describe the statistical model, the
resulting segmentation algorithm, the implementation issues and give visual results.

2. Segmentation Model

As described by Derin and Elliott in [10] and the related works [11-14] we defined a
discrete 3D random field over a finite lattice of voxels and introduced a neighborhood
system on it. A second order neighborhood system was used. The clique definition
was similar to the one described by Derin et al. We did not consider single site cliques
because we did not have prior information regarding the percentage of voxels in each
region type (the missing prior information on the distribution of voxels in each tissue
class could be obtained from a probabilistic atlas of human brain). This class of Gibbs
distributions is used to characterize the spatial clustering of voxels into regions. It
introduces prior spatial information regarding the size, the shape and the orientation
of the regions to be segmented. The spatial smoothness constraint accounts for the
natural contiguity of voxels belonging to the same tissue type, say WM, GM or CSF.
If a voxel is of a certain tissue type, the neighboring voxels should also have a high
probability of being of the same tissue type.

The segmentation vector or the scene was considered as a discrete random variable.
This variable can be associated with a Gibbs Random Field defined on the lattice and
with respect to the neighborhood system under conditions defined in [10]. The digital
MRI data or the observation can be considered as a realization from a random field.
At each voxel, the observation is a multidimensional vector, each component of
which represents an MRI channel. The segmentation process consists of finding the
scene realization (or segmentation), which produced the observation. We used a
maximum a posteriori (MAP) criterion to estimate the realization, which maximized
the a posteriori distribution. Using Bayes� theorem, the posterior probability was
written as the sum of two contributions: the data term and the spatial term. The data
term is the model providing a measurement given a scene realization (or
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hyperparameters. SA is a stochastic relaxation algorithm suitable to search the global
minimum of a non convex function with many local minima.

The ICM algorithm is a partial optimal solution to the optimization problem and
converges to a local minimum of the energy function. Therefore, the initialization
issue has a major importance in the overall success of the segmentation. In order to
initialize the algorithm, a one-class model was adopted. For a given tissue class
number, all the clusters were split, one at a time, and the split which maximized the
posterior probability was kept as the best segmentation. To increment the number of
tissue classes, we split each tissue class in two, one at a time, to obtain different
segmentations [6]. For splitting a given tissue class in two, we first split a given tissue
class independently of the remaining voxels and then, using the resulting
classification, we classified the data using a K-Means algorithm. This class-dependent
initialization of the K-Means algorithm was repeated for all the current classes, so that
each one initiated a different segmentation. The splitting algorithm is based on an
initial division of a given cluster in two, following the principal component of the
corresponding (multichannel) intensity distribution. The initial perturbation initiates a
2-Means algorithm (K-Means with 2 classes). The resulting classification initializes a
global K-Means algorithm within the ICM cycle.

In order to find the optimal number of regions that gives the best fit (cluster validation
issues), information criteria such as minimum description length [18], Akaike
information criterion [19] or MAP criteria [6], [11] can be used.  We considered a
MAP criterion: the configuration that leads to the best segmentation is also the one
which maximizes the MAP value over all the possibilities. Hence, cluster validation
can be carried out along with the class splitting process.

3.    Implementation Issues

The signal intensity of a given brain structure may exhibit important variations due to
normal and pathological intra-tissue variations or the MRI system. These variations
are slowly varying in space. The statistical model should accordingly allow the tissue
classes to have slowly varying intensity functions. For this purpose, local estimates of
means and covariance matrices at all voxel sites were computed over a neighborhood
around each voxel. The size of this neighborhood is an important parameter for a
good appreciation of intensity variations within a tissue class. To account for slowly
varying (low frequency) phenomena, large parts of brain should be used for
computing the estimations while accurate segmentation at the interfaces of tissue
classes requires local estimates of intensity functions [17].

Local measures of means and covariance matrices for all tissue classes make the
segmentation algorithm adaptive. In order to reduce the computation time, estimates
were only calculated on a grid of points and the remaining values were computed
using interpolation. The initial size of the neighborhood should be approximately
equivalent to the size of the head and be progressively reduced, until a minimum size
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is reached. Since MRI data sets may have different resolutions, the size of the
neighborhood should take into account this anisotropy.

For a given tissue class, the robustness of the estimations of its intensity functions at a
given voxel site increases as the number of voxels with the same label and available
in the neighborhood around that voxel grows. Estimates for a given class are then
supposed valid if there are more than a minimal number of voxels with the same label
in the neighborhood.

The spatial prior model based on a homogeneous and isotropic GRF has a major
importance in regularizing the interfaces between different tissue classes. Increasing
the value of the hyperparameters favors the clustering of voxels and imposes a
stronger smoothness constraint. The relative difference between the data term and the
Gibbs term has an impact both at the voxel level, for the computation of a new
segmentation within the ICM and at the global level, where the MAP values are used
to split the existing classes. We used an adaptive simulated annealing algorithm
(ASA) implemented by Lester Ingber [20] to minimize Besag�s maximum pseudo-
likelihood function. Even if estimating the hyperparameters by SA is time consuming,
our experiments showed that changes in the values of hyperparameters might
influence the outcome of the segmentation. Setting the hyperparameters to constant
values may cause oversmoothing and undersmooting.

4.    Result

Figure 1 shows the result of the segmentation of a double channel, PD and T2-
weighted data set. WM, GM and CSF are segmented and we further processed the
data set to remove features which did not belong to the intracranial cavity. Figure 2
shows 3D reconstructions of WM, GM and CSF from a segmented millimetric T1-
weighted data set. Figure 3 shows the result of the segmentation of a millimetric T1-
weighted data set (one axial slice among 150). Successive segmentations are obtained
as intermediary results. They are shown for 2, 3, 4 and 5 tissue classes. We also
provide the segmentation prior to the iterations of the ICM algorithm. The resulting
segmented images confirm the necessity of introducing spatial smoothness constraints
through Gibbs prior. We can also notice the improvement of the overall segmentation
result as the number of tissue classes increases. The best visual result was obtained
with 5 tissue classes. This number was also suggested by the MAP stop criterion
(cluster validation).

5.    Discussion and Conclusion

The class of Gibbs distributions, used as a spatial prior, was an effective way to
account for the piecewise contiguity of brain tissues. Data resolution, the number of
tissue classes and the number of iterations within the ICM algorithm influenced the
hyperparameter values. Our experiments confirmed that using multispectral MRI was
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an efficient way for more robust tissue identification. The adaptivity of the
segmentation algorithm through the variation of the neighborhood size in estimating
intensity functions allows slow intra-tissue variations of class intensities. In a certain
amount, this ability accounts for intensity nonuniformity and normal or pathological
intra-tissue intensity variations. Since the segmentation algorithm does not need to be
initialized, any set of registered (if necessary) MRI channels can be used as input. The
MAP-based cluster validation criterion provides a good indication for the best choice
of the number of tissue classes to be segmented. The regularization model
consistently and automatically improves the quality of the underlying segmentation.
Reproducible measures and high quality visualization can be carried out using
different MRI input configurations.

The implementation of this approach was useful to investigate the advantages and the
limits of a completely unsupervised segmentation to reach both accuracy and
reproducibility. The segmentation algorithm can be improved by incorporating a
global model accounting for intensity nonuniformity. The low-level Markovian
regularization process may be insufficient to successfully reconstruct strongly biased
data. Using additional spatial prior from a probabilistic brain atlas after an atlas-to-
patient elastic matching step can also lead to more robust classification by assigning
the GRF single site clique potentiels to relevant values derived from the atlas.

Fig. 1. Segmentation of double channel proton density (left) and T2-weighted (right) MRI. The
intracranial cavity (WM, GM and CSF) is extracted from segmented data (middle).

Fig. 2. 3D reconstruction of GM, WM and CSF from millimetric T1-weighted segmented data
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Fig. 3. Segmentation of single channel T1-weighted MRI in 2, 3, 4 and 5  tissue classes (top-
down) : original image (left), segmentation without (middle column) and with (right column)
MRF spatial regularization
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