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Abstract. This paper presents a method to analyze volume evolutions of
pulmonary nodules for discrimination between malignant and benign nodules.
Our method consists of four steps; (1) The 3-D rigid registration of the two
successive 3-D thoracic CT images, (2) the 3-D affine registration of the two
successive region-of-interest (ROI) images, (3) non-rigid registration between
local volumetric ROIs, and (4) analysis of the local displacement field between
successive temporal images In preliminary study, the method was applied to the
successive 3-D thoracic images of two pulmonary lesions including a metastasis
malignant case and a inflammatory benign to quantify the evolving process in
the pulmonary nodules and surrounding structure. The time intervals between
successive 3-D thoracic images for the benign and malignant cases were 150
and 30 days, respectively. From the display of the displacement fields and the
contrasted image by the vector field operator based on the Jacobian, it was
observed that the benign case reduced in the volume and the surrounding
structure was involved into the nodule in the evolution process. It was also
observed that the malignant case expanded in the volume. These experimental
results indicate that our method is a promising tool to quantify how the lesions
evolve their volume and surrounding structures.

1. Introduction

Physicians often wish to compare a sequence of thoracic CT images of the same
patient and to analyze dynamical characteristic of pulmonary nodules. Computerized
differentiation between the thoracic CT image sequences may assist physicians to
detect abnormalities and to characterize interval changes in the known lung lesions.
Though the correspondence between slice images of the nodule over time is
interactively performed, the promising results for evaluating the likelihood of
malignancy have been presented by using the sequence of thoracic CT images.
Swensen et al [1] presented a technique based on differential enhancement of
pulmonary nodules after the intravenous administration of iodinated contrast material
to evaluate the likelihood of malignancy. Other group also demonstrated that the
nodule enhancement was an indicator of malignancy based on the succession of
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thoracic CT images [2]. Yankeleviz et al. presented a technique to evaluate nodule
growth based on sequential thin-section CT images [3]. In their technique the nodule
growth was assessed by comparison the image from the initial scan including the
maximal area with the image form the repeat scan including the maximal area. This
comparison was done by displaying the two image sets side by side. However, the
thoracic CT images are not usually reproducible in terms of patient positioning,
inspiration, and cardiac pulsation. The complexity of the lung deformation makes the
analysis of sequential thoracic CT images difficult. In comparison with the existing
approaches of deformation analysis of brain and heart diseases, few works have been
done to address the problem of tracking interval changes in thoracic CT image
sequences [4]. Fan and Chen [5] presented an approach to estimate volumetric lung
warping and registration from 3-D CT images obtained at different stages of
breathing. Their warping model was governed by a model derived from continuum
mechanics and a 3-D optical flow.

The purpose of this study is to aid differential diagnosis of lung lesions through
quantitative analysis of interval changes of the 3-D pulmonary nodule with respect to
the internal structure of the nodule, the nodule margin characteristics, and the
relationship between surroundings and the nodule. In this paper, we present an
approach to analyze the displacement field of thoracic CT image sequences
combining with 3-D rigid and affine registration, non-rigid registration, and vector
field analysis. We apply our method to sequences of 3-D thoracic images with lesions
to evaluate interval changes of 3-D pulmonary nodules.

2. Methods

2.1 Overview

The method consists of four steps; 1) The 3-D rigid registration of the two successive
3-D thoracic CT images., 2) the 3-D affine registration of the two successive region-
of-interest (ROI) images extracted from two registered 3-D thoracic CT images, 3)
non-rigid registration between local volumetric ROIs, 4) analysis of the local
displacement field between successive temporal images. For the first step, we
computed a rigid transformation between two successive 3-D thoracic CT images I
and /,. We then resampled the image I, into /5’ to superpose /I, to I; roughly. To avoid
complexity of the whole lung deformation caused by a combination of body
movement, heartbeats, and respiration, we interactively selected and extracted a local
ROI image including a nodule of interest from the registered 3-D thoracic CT image.
The ROI image was a cubic region (128x128x128 voxels). For both /; and 1, the
same location of the nodule center was interactively determined and the cubic region
centering on this location was extracted. The ROI images extracted from /; and /,” are
denoted as F; and F,, respectively. We then computed an affine transformation
between two ROI images, F| and F,, and we resampled image F, into F,’ to
superpose to Fj. In our experiments we always resample the data into isotropic
volumes before processing them. As previously ascertained by other researches
[6],[7], the mutual information confirms to be a successful measure of goodness of fit
for registration of images. Studholme presented that mutual information is not



Analysis of Pulmonary Nodule Evolutions 105

Non-rigid Registration
Displacenent Field

Deformation Analysis

Fig. 1. Block diagram of the method.

independent of the overlap between two images and suggested the use of the
normalized mutual information as a measure of image alignment [8]. We used the
normalized mutual information as a voxel similarity measure. Next, we computed the
non-rigid displacement between F; and F,’ using a warping function which maps F;
to F,’. The warping function is a displacement field represented by a 3-D array of
displacement vectors. To design the warping function, we used the active net model
proposed by Sakaue [9] for the extraction of a texture region. The active net model is
a two-dimensional (2-D) elastic network model with is a 2-D extension of Snakes
proposed by Kass [10]. This model deforms the net to wrap a target region
minimizing the internal strain energy of the net and the image energy that attracts the
net toward features such as edge of the target region. Witkin et al. formulated
multidimensional matching and registration problems as the minimization of an
energy measure that integrates a similarity term and a smoothness term of the
deformation field [11]. Following their idea, the active net model also might be
applied to estimate the non-rigid displacement by replacing the image energy with the
integral of the density difference between the image sequences. In this study, we
extended the active net into 3-D, which is called 3-D active net to estimate a volume
displacement field between F; and F,’. After computing the local displacement field
between successive ROI images, we analyzed the displacement filed using the vector
field operator based on the Jacobian operator [13].
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2.2 Non-rigid Registration

2.2.1 Warping Function

We compute the 3-D displacement field with a non-rigid transformation based on a
warping function which transforms F; to F,” which represents as the affine
transformation result of F,. The warping function is designed by introducing a 3-D
active net model which minimizes the energy functional and deforms elastically [9].
The energy functional consists of the image energy and the internal strain energy of
the net. The image energy was obtained by the integral of the density difference of
each voxels between F| and F,’. The internal strain energy of the 3-D net constrains
the non-rigid transformation to be smooth assuming that the local displacement field
of the nodules is smooth. This term plays a role to shrink and smooth the 3-D net. By
using three parameters, p, ¢, and r, points on the 3-D nets for 3-D images F and F,’
are defined by w(p.q.r) = (x(p.¢,1), y(p.q,1), 2(p,q.r)) and v(p,q.r) = (X(p.q.r), Y(p.q.r),
Z(p,q,r)) (0< p<1,0< g <1,0<r<1), respectively. The warping function is given by a
3-D displacement field that derived from vectors w. The 3-D displacement field is
obtained by minimizing the energy functional, while the position of each vector v is
fixed. The image energy term of 3-D active net is defined as
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The internal strain energy of the 3-D active net is given by
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where o and g are weighting parameters to control the first and the second terms. The

first term results in the force to shrink the 3-D net. The second term makes the 3-D
net shape smooth. Associated with the smoothness of the transformation R, the
following energy functional of the 3-D active net is obtained.
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2.2.2 Implementation
As a practical computation, the 3-D net is approximated by a nXmx[ mesh;
W(p,q,r) =W(iAn, jAm,kAl) = (x; 45 ¥, ;4> zija)» 0SiSn,0< j<m,0<k </ 4)

where An=1/n, Am=1/m, and Al =1/1. The grid points are placed on the cubic

mesh. Each grid of 3-D net has 26-neighbors. The first term in Eq. (2) results in the
force to shrink the boundary of the 3-D net. To prevent the boundary gird from
shrinking, we fixed the position of the boundary nod of the 3-D net. We used an
iterative technique [9] to obtain the 3-D active net that minimizing the energy
functional in Eq. (3). The ROI images that we intend to match often contain vessels or
bronchi with smaller diameter size than that of the nodule of interest. Therefore, we
incorporated a hierarchical multiresolution approach in which the resolution of the
mesh is increased, along with the image resolution in a coarse to fine manner.

2.3 Vector Field Operator

We characterize the obtained displacement field by using a vector field operator that
transforms a 3-D vector field into 3-D scalar image. The value of each voxel in the
scalar image varies with respect to the nodule evolution. Some vector field operators
of the displacement field have been proposed. Thirion et al. proposed vector field
operations based on the divergence and the norm of the displacement field [12]. Rey
et al. pointed out that values obtained by their operators were hardly interpreted in
terms of physical meanings and proposed another operator based on the Jacobian of
the warping function that was derived from the displacement field [13]. They also
demonstrated that the vector field operator based on the Jacobian provides a measure
of evolution of a small volume. In this study, we adopt the Jacobian operator
proposed by Rey. Let the value of the Jacobian operator at the point P be J. When J>1
, the evolution at the point P is considered as a local expansion and when J<1, the
evolution at the point P is considered as a local shrinking. When J=1, no variation of
volume at the point P is observed. The computation of the first derivatives in the
Jacobian of the warping function was performed by using the recursive filtering
proposed by Derich [14].

3. Results and Discussion

Thin-section CT images were obtained by the helical CT scanner (Toshiba TCT900S
Superhelix) under the following conditions; beam width: 2mm, table speed: 2mm/sec,
tube voltage; 120kV, tube current: 250mA. For the scan duration, patients held their
breath at full inspiration. Per patient, about 60 slices at Imm intervals were obtained
to observe the whole nodule region and its surroundings. The range of pixel size in
each square slice of 512 pixels was between 0.3x0.3 mm” and 0.4x0.4 mm”. The 3-D
thoracic image was reconstructed by a linear interpolation technique to make each
voxel isotropic.

We present the application results of our method to two sets of successive 3-D
thoracic CT images 4 and B. The data set 4 contains sequential 3-D thoracic CT
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Fig. 2. ROI images of the benign nodule. (a) ROI image C, measured at 7). (b) ROI image
C; measured at 7). Cross-sections for the xy-plane, yz-plane, xz-plane are shown.

Fig.3. ROI images of the malignant nodule. (a) ROI image D, measured at 75. (b) ROIL
image D measured at 73. Cross-sections for the xy-plane, yz-plane, xz-plane are shown.

images A, and 4, of a patient with a benign nodule. These images 4, and 4, measured
at different time T, and T, respectively. The period between 7}, and 77 was 150 days.
The data set B contains sequential 3-D thoracic CT images B, and B, of a patient with
a malignant nodule. These images B, and B; measured at different time 75 and 73,
respectively. The period between T, and 73 was 30 days.

Figs. 2 and 3 show ROI images of benign (4y and 4, ) and malignant (B, and B)) It
is observed that the benign nodule reduces its volume over time and the malignant
nodule expands its volume over time.

We computed the displacement fields between two consecutive ROI images by
using the non-rigid registration. Fig.4 shows the deformed grids of the benign and
malignant nodules. It can be observed that the effect of a shrinking and an expansion
of the grids for benign and malignant nodules evolutions. Fig.5 shows application
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(a) ®)

Fig. 4. 3-D Displacement fields. (a) Benign nodule. (b) Malignant nodule. Cross-sections
of 3-D displacement field for the xy-plane, yz-plane, xz-plane are shown.

Fig.5. Applications of the vector field operator based on the Jacobian. (a) Benign nodule.
(b) Malignant nodule. Cross-sections of 3-D displacement field for the xy-plane, yz-plane,
xz-plane are shown.

results of the vector field operator based on the Jacobian. The more contrasted areas
demonstrate the shrinking or the growing regions of nodules. From the display of the
displacement fields and the contrasted image by the Jacobian operator, it is observed
that the benign case reduces in the volume and the surrounding structure is involved
into the nodule in the evolution process. It is also observed that the malignant case
expands in the volume without deform the surrounding structure.

The application results of our method to the sequence of 3-D thoracic images
demonstrate that the time interval changes of lesions can be made visible.
Additionally, the experimental results shows that the displacement field computed by
our method might be used to quantify how the lesions evolve their volume and
surrounding structures by using the vector field operator based on the Jacobian. Real
pulmonary nodules have a complex evolving process types such as tissue
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deformation, tissue displacement into other tissues, and combination of them. Still,
the quantitative analysis of the displacement field of consecutive nodule images could
aid physician diagnosis of indeterminate pulmonary lesions using only the static 3-D
thoracic image.

4. Conclusion

We have presented a volumetric analysis method in evolving processes of pulmonary
nodules by combining with 3-D rigid and affine registration, non-rigid registration,
and vector field analysis. The application results of our method to the sequence of 3-
D thoracic images have demonstrated that the time interval changes of lesions can be
made visible. Additionally we have presented that the deformation field and the
contrasted image by the vector field operator might be used to quantify how the
lesions evolve their volume and surrounding structures. To analyze the capabilities of
our method, we are collecting successive 3-D thoracic CT images from appropriate
clinical cases.
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