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Abstract. A major problem with non-rigid image registration tech-
niques in many applications is their tendency to reduce the volume of
contrast-enhancing structures [10]. Contrast enhancement is an intensity
inconsistency, which is precisely what intensity-based registration algo-
rithms are designed to minimize. Therefore, contrast-enhanced structures
typically shrink substantially during registration, which affects the use
of the resulting transformation for volumetric analysis, image subtrac-
tion, and multispectral classification. A common approach to address this
problem is to constrain the deformation. In this paper we present a novel
incompressibility constraint approach that is based on the Jacobian de-
terminant of the deformation and can be computed rapidly. We apply our
intensity-based non-rigid registration algorithm with this incompressibil-
ity constraint to two clinical applications (MR mammography, CT-DSA)
and demonstrate that it produces high-quality deformations (as judged
by visual assessment) while preserving the volume of contrast-enhanced
structures.

1 Introduction

Non-rigid image registration algorithms [IH]7] based on free-form deforma-
tions [3] have recently been shown to be a valuable tool in various medical im-
age processing applications. However, a major problem with existing algorithms
is that when they are applied to pre- and post-contrast image pairs, they pro-
duce transformations that substantially shrink the volume of contrast-enhancing
structures. Tanner et al. [I0] observed this for contrast-enhanced breast lesions
and we have observed this for contrast-enhanced vessels in CT-DSA. This prob-
lem severely affects the usefulness of the resulting transformation for volumetric
analysis, image subtraction, and multispectral classification.

To address this problem, an additional “energy” term is typically added to the
intensity-based similarity measure to constrain the deformation to be smooth.
Some authors use a mechanically motivated energy term that constrains the
“bending energy” of the deformation [7]. A different approach uses “coupled”
control points of the deformation to make the contrast-enhanced lesion locally
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rigid [I0]. This approach of course requires identification of these structures prior
to or during registration. Also, it prevents deformation of these structures even
in cases where they have actually deformed.

In this paper, we present a novel incompressibility (local volume preserva-
tion) constraint based on the Jacobian determinant of the deformation. Soft
tissue in the human body is generally incompressible. By penalizing deviations
of the local Jacobian determinant of the deformation from unity, this knowl-
edge can be incorporated into the registration process. The Jacobian has been
used for analyzing non-rigid transformations [2J10]. This paper, as far as we are
aware, is the first report of the use of this mathematical tool to enforce tissue
incompressibility during the registration. We also introduce a locally adaptive
deformation refinement and present some modifications to the implementation
details of existing non-rigid registration algorithms. Both improvements lead to
a substantial increase in computational efficiency.

We apply our intensity-based non-rigid registration algorithm using con-
strained adaptive multilevel free-form deformations to sample MR mammog-
raphy and CT-DSA images and demonstrate that it produces high quality de-
formations while preserving the volume of contrast-enhanced structures.

2 Methods

General Registration Algorithm. Our rigid registration algorithm is based on an
independent implementation [BJ6] of a technique for rigid and affine registra-
tion described in Ref. [8]. It uses “normalized mutual information” (NMI) as
the similarity measure [9]. In the first step, this method is employed directly
for finding an initial rigid transformation to capture the global displacement of
both images. The rigid transformation is then used as the initial estimate for the
non-rigid registration. The non-rigid algorithm is an independent and modified
implementation of a technique presented by Rueckert et al. [7]. It uses the same
NMI similarity measure as the rigid registration. However, a different optimiza-
tion technique (modified steepest-ascent line search [3]) is used to address the
problem of the high dimensionality of the search space in the non-rigid case.
In addition to the NMI similarity measure Enni, our technique incorporates an
additional penalty term FEjacobian t0 constrain the deformation of the coordinate
space. A user-defined weighting factor w controls the relative influence of Enwg
and FEjacobian, combining both into the overall cost function Ergta) as follows:

Etotal = (1 - W)ENMI + wEjacobian- (1)

A description of the term Fjacobian and its computation are provided below.
B-Spline Deformation. The non-rigid registration algorithm determines the
set of parameters of a deformation T that optimizes the cost function in Eq. Il
T is defined on a uniformly spaced grid ¢ of control points ¢; ; i, where —1 <
i <ng—1 -1<j<ny—1,and -1 < k < n, — 1. Control points with 1,
J, or k equal to either 0 or ny —3 (n, —3 and n, — 3 for j and k) are located
on the edge of the image data. The spacings between the control points in z-,
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y-, and z-directions are denoted by d,, d,, and d,, respectively. For any location
(z,y, z), the deformation at these coordinates is computed from the positions of
the surrounding 4 x 4 x 4 neighborhood of control points:

T(x,y, Z) = Z Z Z Bl(U)Bm(U)Bn(w)(bi-‘rl,j-‘rm,k-‘rn- (2)

Here, i, j, and k denote the index of the control point cell containing (z,y, 2),
and u, v, and w are the relative positions of (x,y, z) in the three dimensions. The
functions By through Bjs are the approximating third-order spline polynomials
as described by Ref. [3].

The degrees of freedom of a B-spline based transformation are the coordinates
of the control points ¢; ;1. In comparison to previous algorithms, ours does not
consider these vectors to be offsets from the original control point positions
with initial displacements of 0. Instead, we use them as absolute positions and
initialize them as

6% = (i8s, j6,, k5.). (3)

Thus, the actual coordinate transformation is (x,y, z) — T(z,y, z) rather than
(z,y,2) — (2,9, 2)+T(x,y, z). This makes application of the actual deformation
computationally more efficient for two reasons: First of all, it immediately re-
duces the number of required real-value additions per transformed coordinate by
3. More importantly, T is linear with respect to the ¢; ;3. Therefore, an initial
rigid transformation A can be incorporated by applying it to the control point
positions ¢:

(AoT)(z,y,2) =Y > > Bilw)Bn(v)Ba(w)(Aditijsmpetn).  (4)

As a consequence, the computational cost for every transformed vector is reduced
by the cost of a vector-matrix multiplication plus another vector addition. By im-
plicitly applying the rigid transformation after the deformation, we ensure that
this is mathematically equivalent to explicitly applying A (because computation
of i, j, k, u, v, and w remains independent of A).

Deformation Constraint. The design of our deformation constraint is moti-
vated by the observation that most tissues in the human body are incompressible.
In a small neighborhood of the point (x,y, z), the local compression or expan-
sion caused by the deformation T can be calculated by means of the Jacobian
determinant:

#}Tz(ﬂf,y,Z) LTy (x,y,2) %Tz(ﬂf,y,Z)
JT(a:,y,z) = det %Ty(mayvz) a—Ty(a:,y,z) ETy(ajayvz) . (5)
%Tz(xvyaz) a—yTz(l“,y,Z) %Tz(xvyaz)

The value of Jr(z,y,z) is equal to 1 if the deformation at (z,y, z) is incom-
pressible, greater than 1 if there is local expansion, and less than 1 if there
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is compression. Since the 3-D spline is the tensor product of independent 1-D
functions, its derivative with respect to x can easily be computed as follows:

3 3
%TI(I,ZJ,Z) = %Z Z Z (%Bl(u)> Bm(v)Bn(w)¢i+l,j+m,k+n- (6)

The remaining derivatives are obvious. Computation of the entries of Jr is in
fact very similar to computing T itself. Depending on the position in the matrix,
the spline polynomial B in the respective dimension is simply replaced by its
derivative. Using the above definition of Jr, the incompressibility constraint
penalty is defined as the normalized sum of the absolute logarithm of the local
scaling divided by the global one:

Ejacobian = Z ‘IOg JT qj)z] k)/s) ) (7)
.5,k

where S = 5,55, is the total scaling of the initial affine (rigid plus anisotropic
scaling) transformation A and s, sy, and s, are the scale factors in each dimen-
sion. This term penalizes deviations of J1/S from 1, i.e., it penalizes local tissue
expansion and compression. The motivation for using the log of the scaling ratio
is to equally penalize a local scaling by ¢S and by S/c and thus achieve equal
weighting of local expansion and compression. The penalty term is furthermore
normalized by dividing by the number Ng of control points. This is necessary
as during the application of a multilevel strategy the number of control points
and therefore the number of addends in[7] increases by a factor of 8 per level.

Two properties of the penalty term Fjacobian should be noted. First, the
penalty term does not penalize rigid transformations with anisotropic scaling.
Second, as Jr is evaluated only at the control points, the spline coefficients
B as well as their derivatives take on particularly simple forms. For this rea-
son, Fjacobian can be computed very efficiently, which is important to keep
execution time reasonable. The same is true for the discrete approximation
to the derivatives of Ejacobian With respect to the coordinates of any control
point. For finite difference approximation to this derivative, a small offset ¢
is added to and subtracted from the respective parameter. Ejacobian 1S then re-
evaluated, yielding E‘]acoblan and B, ... As all addends in[@outside a 4 x 4 x 4
neighborhood of the affected control point are constant, they cancel out when
AFEjacobian = E{wb—a—EE@bﬁ— is calculated. Computation can thus be restricted
to the interior of the 1ocal neighborhood region.

Multilevel B-Splines. An arbitrary B-spline deformation can be refined to an
identical deformation with the control point spacing in every dimension divided
by 2. In the 1-D case, the transformed control point positions ¢; of the refined
grid can be computed from the coarse control points ¢;:

Ghis = 5 (Gt 6i1) and g = (Bis + i +66). (8)

This can be generalized to 3-D by applying the tensor product. For 2-D, the
resulting explicit assignments are given in Ref. [3]; for 3-D they can be found in
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Fig. 1. Local (left) and global (right) refinement of the control point grid. Active
control points are marked by e in the right picture.

Refs. [4]5]. However, it is sufficiently efficient and considerably more convenient
to compute the tensor product on-the-fly using 8] rather than by applying the
closed forms.

Grid Refinement and Fized Control Points. Refinement of the control point
grid by a factor of 2 per dimension increases the number of control points by
roughly a factor of 8. The leads to a dramatic increase in computation time.
However, not everywhere in the deformed image is the refined grid actually
helpful. One approach is to refine the grid only in areas where small deformations
could not be modeled otherwise (Fig.[], left). However, for B-spline deformations
it is difficult to preserve consistency at the transition from refined to unrefined
grid cells.

We have therefore chosen an alternative approach that unites the power
of multilevel deformations with the computational efficiency of locally refined
control point grids. In fact, the deformation is globally refined. However, con-
trol points where there is insufficient local intensity variation (information) to
meaningfully estimate finer deformation (e.g., control points in the image back-
ground) are fixed to their current positions. This means that their coordinates
are no longer considered degrees of freedom of the deformation. Thus, they can
be excluded from gradient computation and optimization. The only penalty still
arising from the global refinement is the increased amount of memory required
to store the locations of all control points in the refined grid. Computational ef-
ficiency is not affected by this as computation of the deformation is independent
of the number of control points. In fact, as the globally refined grid is more reg-
ular than a locally refined one, the globally refined deformation can potentially
be computed more efficiently than one defined on a locally refined grid.

Local Entropy. In order to determine which control points are fixed and which
are considered variable, a local entropy criterion is applied. For each control point
@45k, the entropy H, ZR] i of the reference image data is computed over the region
D; ;1 that is influenced by its position:

=g 3 plr(0)losp(r(0), ©)
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Fig. 2. Illustrative example of local entropy criterion. Left: Original CT image.
Center: Local entropy in 4 x 4 x 4 neighborhoods of the B-spline control points.
Right: Binary image where feature voxels represent neighborhoods where local
entropy is greater than 50% of the maximum. Control points where local entropy
is less than 50% of the maximum (background voxels in the binary image) are
fixed to their current positions.

Here, r(x) are the voxels in D; ;, and p(r) is the probability of the respective
grey value computed over all voxels in D; ;5. In addition, this local entropy is
also computed for the corresponding region in the model image under the current
deformation. Then, the maximum entropy over all control points is determined
separately for the reference and the model image. Using these limits, a control
point is fixed if and only if the local entropies associated with it are less than
50% of the respective maximum in the reference and model image. An example
of this process is illustrated in Fig. 2] By considering the local entropies from
both reference and model, it is ensured that the deformation remains active even
in areas where one of the images has little structure as long as there is sufficient
information in the other one.

3 Results

We applied the algorithm presented in this paper to two CT-DSA (head-and-
neck and abdomen) and one MR mammography image data sets. Both types of
study involve acquiring images before and after contrast injection. We registered
each pair of images using rigid registration, unconstrained deformation, and de-
formation with the incompressibility constraint, and then computed subtraction
images (post- minus pre-contrast). Figure Bl illustrates the results achieved using
our technique in a subtraction image from one of the MR mammography data
sets. The deformation algorithm started with a 40 mm control point spacing that
was refined to 20 mm and then to 10 mm.

There is considerable artifact in the subtraction images obtained with rigid
registration due to tissue deformation not captured by the rigid transforma-
tion. The unconstrained and the constrained non-rigid registrations produced
subtraction images with substantially reduced motion artifact. Both non-rigid
registration subtraction images visually appeared virtually identical, except that
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Fig. 3. From left to right: Original breast MR image (post contrast), subtraction
image (post- minus pre-contrast) after rigid registration, after unconstrained de-
formation, and after deformation with the incompressibility constraint. The sub-
traction images are displayed with an inverse gray scale to produce a clear pre-
sentation in print. [Image data provided by Michael Jacobs and David Bluemke,
The Johns Hopkins University School of Medicine, Baltimore, MD.]

contrast-enhanced structures (vessels in CT-DSA, tumor in MR mammography)
visibly shrank in the unconstrained deformation subtraction images, but not in
those obtained with constrained deformation. The shrinkage was quantified in
the MR mammography study.

Volume Preservation. In the MR mammography image data set, the contrast-
enhanced tumor was segmented (by region growing) in the stack of subtraction
images used to generate the slices in Fig. Bl This allowed for the volumetric
analysis of the different results. We found that after rigid registration the tu-
mor occupied a volume of 4.46 ml. After unconstrained deformation, the tumor
volume shrank by 27% to 3.25 ml. After deformation using the incompressibility
constraint with a weight of 5 x 1072, the tumor volume remained virtually un-
changed at 4.45 ml while still achieving the same visual artifact reduction. Using
Jacobian weights of 1072 and 1072, the tumor volume shrank only slightly to
4.31 ml. This reduction of 3% is within the estimated accuracy of the volume
computation.

Computational Efficiency. Adaptive fixing of grid control points has two ben-
eficial effects on the computation time. First, fixed parameters need not be con-
sidered for gradient estimation, thus directly reducing the computation time per
optimization step. Also, the effective dimension of the search space is reduced,
which decreases the number of optimization steps required to find the final so-
lution. For typical image data, we experienced the fraction of fixed parameters
to be somewhere between 30% and 60% depending on the ratio of object and
background voxels. This lead to an observed reduction of computation time by
at least 50%.

4 Discussion

We have presented a non-rigid registration algorithm with a novel incompress-
ibility constraint. The Jacobian-based penalty term is effective and efficient. It
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is relatively insensitive to the choice of the weighting factor with respect to the
intensity-based similarity measure. This is essential since the two terms in our
cost function (NMI and Jacobian-based penalty term) are fundamentally differ-
ent entities and thus there is no a-priori “correct” weighting.

Preliminary results on three image data sets suggest that incorporation of this
constraint improves non-rigid registration of pre- and post-contrast images by
substantially reducing the problem of shrinkage of contrast-enhanced structures.
The energy term as well as its discrete derivative is easy to implement and can be
computed rapidly. In fact, almost no performance penalty is experienced when
using the Jacobian-based constraint. Our algorithm also incorporates locally
adaptive multilevel refinement, which improves computational efficiency of the
non-rigid registration.
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