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Abstract. This paper presents an original knowledge driven automatic contour
detection approach based on neuro-fuzzy techniques. The method simulates a
trained virtual autonomous mobile robot that delineates the organ outlines by
combining local image information and global a-priori shape knowledge. In a
pilot validation study into left ventricular delineation in cardiac MR images, our
novel method demonstrated a high robustness, and a clinically acceptable
border localization performance.

1 Introduction
Automatic Left Ventricle (LV) contour detection methods encounter two major
problems: (i) Manual expert contours do not always coincide with the location of the
strongest local image features (the LV ENDO border is a convex hull around the
blood pool), somewhat 'outside' of the strongest edge. (ii) Due to noise and image
artifacts in routinely acquired clinical images, a-priori knowledge about the shape and
image appearance of the LV is essential to achieve robust localization performance.

We incorporate a-priori shape and appearance knowledge and local information in
the simulation and training of a virtual autonomous mobile robot that delineates fully
automatically the LV.

2 General Outline of the Method
Our virtual robot is a tri-cycle with a steering front wheel (see Figure 1.a). The robot
is subject to non-holonomic kinematic constraints: it can move only along a direction
perpendicular to its rear wheel axis (continuous tangent direction) and its turning
radius is lower bounded (maximum curvature). The car has a maximum curvature
constraint; this provides us with an easy means to go around the papillary muscles
(see figure 1.b).

The robot is provided with range sensors, mounted on its front, left and right sides.
They are simulated by rays of limited length, launched from the robot in different
directions. The range sensors enable the robot to estimate the distance to the
myocardium borders.

The robot has to navigate around the LV cavity. To isolate the cavities from the
background, a fuzzy clustering algorithm is used followed by a region growing. The
gray levels are automatically grouped into 3 clusters: very bright (cavities), bright
(myocardium) and dark (background). By setting the initial position of the robot
outside the LV cavity and the target point inside the LV, the robot navigates around
the LV cavity in a wall tracking-mode looking for an opening. Since the cavity is
closed, the robot will accomplish a complete loop and stop.
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While navigating, the robot delineates the LV contours and distinguishes the septal
wall (between left and right ventricular cavities) from the lateral wall. The recognition
of septal and lateral wall segments is realized by sampling local image patches of the
robot�s environment as a grid of 3x3 regions. Each region is characterized by 3
membership degrees to the fuzzy sets: background, myocardium and cavity. The robot
uses a trained fuzzy neural network to classify its local patch of image into septum or
lateral. The neural network was trained on image data from 21 normal subjects.
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Fig. 1. (a) Tric-cycle model with range sensors (b) Navigation environment in short axis
images of the heart. (c) LV contour delineation by the exploring robot. The septum is
automatically delimited by the 2 lines going from the cavity to the myocardium.

3 Results and Discussion
The three end-diastolic mid-ventricular slices of 16 normal subjects and 7 infarct
patients were considered. An expert observer was asked to draw the LV contours.

The average signed (AS) and root mean square (RMS) border positioning errors
were calculated for the ENDO and EPI borders by measuring the distances between
corresponding border points along 100 rays perpendicular to the centerline between
the manual and the automatic contour. In addition, two clinically important area
measures were calculated: ENDO area (cm2) and EPI area (cm2).

The automatic detected borders agreed very closely with the manually identified
contours (see Figure 1.c). For the endocardium, the AS error was -0.56±1.78 mm and
the RMS error was 1.77±0.6 mm. For the epicardium, the AS error was -0.2±2.1 mm
and the RMS error was 1.93±0.84 mm. A good correlation was found between the
observer�s and the robot�s LV ENDO and EPI areas (y=1.08*x-0.63, r = 0.89 and
y=1.02 *x�0.99, r=0.89). Average paired difference in area measures amounted to �
1.1 ± 1.84 cm2 and 0.36 ± 2.8 cm2 for ENDO and EPI contours, respectively,
indicating a very slight, but clinically acceptable, overestimation of the LV ENDO
area. Our approach has been easily generalized to the image time-series from end-
diastole to end-systole. It showed very high robustness to LV shape variation and
deformation.
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