
Evaluation of Diffusion Techniques

for Improved Vessel Visualization and
Quantification in Three-Dimensional

Rotational Angiography

Erik Meijering1, Wiro Niessen1, Joachim Weickert2, and Max Viergever1

1 Image Sciences Institute, University Medical Center Utrecht,
Heidelberglaan 100, NL-3584 CX Utrecht, the Netherlands.

{erik,wiro,max}@isi.uu.nl
http://www.isi.uu.nl/

2 Computer Vision, Graphics and Pattern Recognition Group,
Department of Mathematics and Computer Science,

University of Mannheim, D-68131 Mannheim, Germany.
Joachim.Weickert@uni-mannheim.de

http://www.cvgpr.uni-mannheim.de/weickert/

Abstract. Three-dimensional rotational angiography (3DRA) is a prom-
ising imaging technique which yields high-resolution isotropic 3D images
of vascular structures. Raw 3DRA images, however, usually suffer from
a high noise level and the presence of other artifacts. For accurate vi-
sualization and quantification of vascular anomalies, noise reduction is
therefore highly desirable. In this paper we analyze the effects of several
linear and nonlinear filtering techniques for that purpose. From the re-
sults of in vitro experiments we conclude that edge-enhancing anisotropic
diffusion is very suitable for mentioned tasks. However, in view of the
computational requirements of this technique, the regularized isotropic
nonlinear diffusion scheme may be considered a useful alternative.

1 Introduction

Three-dimensional rotational angiography (3DRA) is a relatively new technique
for imaging blood vessels in the human body [1,2,3,4,5]. Using a standard C-
arm imaging system, this technique yields high-resolution isotropic 3D datasets
reconstructed from 2D X-ray angiography images acquired during a 180-degree
rotation of the X-ray source-detector combination following a single injection of
contrast material. The vascular structures of interest can afterwards be studied
from any desired angle by the use of 3D visualization techniques. The absence
of overprojections and the high resolution of the resulting datasets make the
technique also potentially interesting for quantitative studies.
However, visualization of raw 3DRA images is usually unacceptable, due to

the high noise level and the presence of reconstruction artifacts and unwanted
structures resulting from inhomogeneous surrounding tissue. In order to improve
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the quality of volume and surface renderings, some form of noise reduction must
be applied to the raw data prior to visualization. Although application of noise
reduction techniques may result in qualitatively better renderings, the effects of
such techniques on the subsequent quantification of vessels and vascular anoma-
lies based on those renderings have not yet been reported in the literature.
Analysis of these effects is important, as particular techniques may increase the
user-dependency of volume and surface renderings—which are generally based
on one or more user-defined thresholds—and thus the reliability of quantitative
measurements obtained from those renderings. In this paper we evaluate several
linear and nonlinear diffusion filtering techniques for noise reduction by analyz-
ing their effects on the quality of visualization and the accuracy of quantification
of vascular anomalies in 3DRA images.

2 Diffusion Techniques

The noise reduction techniques considered in this study are uniform filtering,
Gaussian filtering or linear diffusion, regularized isotropic nonlinear diffusion,
and edge-enhancing anisotropic diffusion, which are briefly described next.

Uniform Filtering. The simplest and computationally cheapest approach to
reduce noise in images is to average the grey-values of voxels in a cubic neigh-
borhood around each voxel by means of separable uniform filtering (UF):

I(x) = (I0 ∗ Um)(x), x = (x, y, z) ∈ X, (1)

where I0 denotes the original 3D image, X ⊂ IR3 is the image domain, and
Um(x) = um(x)um(y)um(z) denotes the 3D normalized uniform filter given by
um(ξ) = m−1 if |ξ| ≤ 1

2m, m ∈ IN odd, and um(ξ) = 0 otherwise.

Gaussian Filtering. Another frequently used approach to image smoothing is
Gaussian filtering (GF), also implemented by separable convolution:

I(x) = (I0 ∗ Gσ)(x), x = (x, y, z) ∈ X, (2)

with Gσ(x) = gσ(x)gσ(y)gσ(z), and gσ denoting the Gaussian with standard de-
viation σ. The process (2) constitutes the solution to the linear diffusion equation
∂tI(x; t) = ∇ · ∇I(x; t), with σ =

√
2t and initial condition I(x; 0) = I0(x).

Regularized Isotropic Nonlinear Diffusion. The first nonlinear technique
included in this study is the regularized version of the Perona-Malik scheme [6].
This scheme (RPM) is obtained from the linear diffusion equation by including
a gradient-dependent diffusivity:

∂tI(x; t) = ∇ ·
(
D

(‖∇Iτ (x; t)‖2
)∇I(x; t)

)
, (3)

where the gradient is computed at scale σn =
√
2τ , τ > 0. In our study, we

used [7] D
(
ξ2

)
= 1 − exp(−3.31488/(ξ/ζ)8

)
, where ζ > 0 corresponds to the

minimum contrast needed for structures in order to be preserved.
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Edge-Enhancing Anisotropic Diffusion. The second nonlinear diffusion
technique (EED) does not only take into account the contrast of an edge, but
also its orientation. This is achieved by replacing the scalar-valued diffusivity in
(3) by a diffusion tensor [7]:

∂tI(x; t) = ∇ ·
(
D

(∇Iτ (x; t)
)∇I(x; t)

)
, (4)

whereD is constructed from the system of orthonormal eigenvectors v1‖∇I(x; τ),
v2 ⊥ ∇I(x; τ), v3 ⊥ ∇I(x; τ) and ⊥ v2, and corresponding eigenvectors λ1 =
D

(‖∇I(x; τ)‖2
)
and λ2 = λ3 = D(0) = 1, with D as in RPM. With this choice

of D, smoothing along edges is preferred over smoothing across them.

3 Vascular Anomalies

Currently, 3DRA is used primarily for visualization and subsequent quantifica-
tion of carotid stenosis and intracranial aneurysms [3,4,5]. We briefly discuss the
measures used for quantification of these anomalies.

Carotid Stenosis. For the quantification of the degree of stenosis of the inter-
nal carotid artery (ICA) we used the North American Symptomatic Carotid En-
darterectomy Trial (NASCET) measure and the common carotid measure (CC)
[8], respectively defined as DNASCET = (1− dS/dICA) and DCC = (1− dS/dCCA),
with dS, dICA, and dCCA as in Fig. 1. Both measures involve measuring the lu-
minal diameter at the point of maximum stenosis (dS). The NASCET measure
furthermore involves the diameter (dICA) of a visible portion of disease-free ICA
distal to the stenosis, whereas the CC measure uses the diameter (dCCA) of the
visible disease-free distal common carotid artery (CCA).

Fig. 1. Diameters involved
in the different measures
for quantification of inter-
nal carotid stenosis (left)
and intracranial saccular
aneurysms (right).

Intracranial Aneurysms. For quantification of intracranial aneurysms, sev-
eral measures were considered. The first is the dome diameter (dD, see Fig. 1),
which has been shown to relate significantly to risk of rupture [9]. The second
measure considered in this study is the diameter of the aneurysmal neck (dN),
which is important in selecting an appropriate clip in the case of surgical inter-
vention or for predicting successful obliteration of the aneurysmal lumen in the
case of endovascular treatment [10]. The ratio between diameters dN and dD of
the aneurysm has also been suggested as a guideline in deciding between surgical
or endovascular treatment [11].



180 E. Meijering et al.

4 Experiments and Results

The experiments were carried out on phantoms for which ground truth was
available. In this section we describe the phantoms and image acquisition, the
method of evaluation, and the results.

Phantoms and Image Acquisition. Images were obtained of a carotid an-
thropomorphic vascular phantom (CAVP) with an asymmetrical stenosis in the
ICA, and an intracranial anthropomorphic vascular phantom (IAVP) with a
berry aneurysm at the tip of the basilar artery (BA). The phantoms (R. G. Shel-
ley Ltd., North York, Ontario) represent average dimensions of the correspond-
ing vascular structures in the human body: dS = 1.68mm, dICA = 5.6mm,
dCCA = 8.0mm, dN = 2.6mm, and dD = 12.9mm. Each of the phantoms was filled
with contrast material (50% diluted Ultravist-300, Schering, Weesp) and an In-
tegris V3000 C-arm imaging system (Philips Medical Systems, Best) was used to
acquire 100 X-ray angiography images (resolution 5122 pixels, 10 bits/pixel, see
Fig. 2 for examples) during automatic rotation of the C-arm over 180 degrees
lasting eight seconds. A modified filtered back-projection algorithm was then
applied to generate 3DRA images at resolutions of 1283 voxels of size 0.63mm3

and 2563 voxels of size 0.33mm3, 16 bits/voxel.

Fig. 2. Sample X-ray projection
images taken from the rotational
angiography runs of the CAVP
(left) and the IAVP (right). The
images give an impression of the
morphology and complexity of the
modeled vasculature.

Method of Evaluation. We first investigated the capabilities of the filtering
techniques to reduce background noise while retaining vessel contrast as much
as possible. To this end we measured the contrast-to-noise ratio (CNR) in each
of the vessels of interest: CNR = (〈I〉V − 〈I〉B)2/σ2

B, where I and σ2 denote
image intensity and variance, respectively, and V and B vessel and background
regions. For B, a fixed background region was selected in each of the images.
The CNR was measured as a function of “evolution time”, t. This variable is
explicitly present in RPM and EED, and together with the temporal step-size
∆t determines the number of iterations of the discretized differential equation
to be carried out. For GF we have the relation t = σ2/2. For UF we used
the same relation, with σ the standard deviation of um, so that t = m2/24,
where m is a discrete variable for which we took values of 1, 3, 5, 7, 9, and 11.
To allow a direct comparison of the results of UF and GF, RPM, and EED, the
measurements for the latter schemes were carried out at corresponding evolution
times t = 0.0 (original), 0.375, 1.042, 2.042, 3.375, and 5.042. In all experiments,
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the additional parameters of RPM and EED were fixed to σn = 0.5 and ζ = 0.05,
which seemed to be appropriate values according to initial experiments.
Next, the effects of the techniques on quantification of the vascular anomalies

were investigated. Therefore, the diameters dS, dICA, dCCA, dN, and dD were mea-
sured as a function of both t and the threshold parameter θ. For t we used the
same values as in the CNR measurements. The parameter θ is used in practice
to separate relevant (vascular) from non-relevant (noise and other) structures in
the visualizations, on the base of which quantification takes place. In order to
use acquisition independent values for θ, the images were “normalized” so as to
make the average background intensity 0.0 and the average intensity within the
vessels 1.0. Together with the ground-truth values, the results allowed for an as-
sessment of both accuracy and robustness to threshold selection of quantitative
measurements and their dependency on the filter strength.
Finally, we looked at the qualitative (visual) effects of the different noise

reduction techniques. These concerned the apparent (not measured) dimensions
of the vascular anomalies in 3D visualizations of the filtered 3DRA datasets
and their dependency on the user-controlled threshold parameter, as well as the
apparent smoothness of the vascular structures in these visualizations. To this
end, both exo- and endovascular surface renderings were generated by using a
standard Phong shading technique.

Results. Because of space limitations we have to confine ourselves here to show-
ing only some of the results and to summarize the overall findings. Examples of
CNR measurement results carried out in high-resolution 3DRAs of the CAVP
and IAVP are given in Fig. 3. The results showed that the four schemes UF,
GF, RPM, and EED reduce noise equally well in vessel segments with a rel-
atively large luminal diameter (typically larger than 10 voxels). For segments
with smaller diameters, the nonlinear filtering techniques (RPM and EED) out-
performed the linear techniques (UF and GF) for larger evolution times.

CNR(t) [dB] in stenosis at high res. CNR(t) [dB] in dome at high res.
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Fig. 3. Contrast-to-noise ratio (CNR) as a function of evolution time (t) for
the four techniques (UF, GF, RPM, EED), measured in the stenosis (left) and
dome (right) in the high-resolution 3DRA reconstruction of the CAVP and
IAVP, respectively.
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DNASCET(θ; t) [%] for UF at high res. DNASCET(θ; t) [%] for GF at high res.
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DNASCET(θ; t) [%] for RPM at high res. DNASCET(θ; t) [%] for EED at high res.
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Fig. 4.Degree of stenosis (DNASCET) as a function of the user-controlled threshold
(θ) and evolution time (t) for the four techniques (UF, GF, RPM, EED), as
measured in the high-resolution reconstruction of the CAVP. The true value is
DNASCET = 70%.

Whereas the CNR measurements concerned the behavior of the techniques in
the background and the interior of vessels, the diameter measurements revealed
their performance at the transitions from background to vessel. Examples of the
results of these experiments are given in Fig. 4. These results showed that, as
expected, the linear techniques (UF, GF) dramatically increase the dependency
of the measurements on the user-controlled threshold parameter (θ) as the fil-
tering was made stronger (larger t). The RPM scheme, on the other hand, had
a negligible influence on this dependency, irrespective of evolution time. The ef-
fects of EED on the user-dependency were negligible only in the high-resolution
3DRAs, where all diameters were larger than about five voxels.
Finally, examples of exo- and endovascular surface renderings generated from

the high-resolution 3DRA images of the CAVP and IAVP after application of
the different techniques are shown in Figs. 5 and 6. The renderings show close-
ups of the vascular anomalies and give a visual impression of the effects of the
techniques on the smoothness of the vessel walls and the changes in the apparent
dimensions of the anomalies when varying the user-controlled threshold. The
renderings support the findings of the quantification experiments: the linear
techniques increased the user-dependency of the vascular dimensions, while the
negative effects of RPM and EED were marginal. The smoothness of the vessel
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UF GF RPM EED

θ = 0.3

θ = 0.5

Fig. 5. Exovascular surface renderings of the IAVP illustrating the effects of the
different techniques (UF, GF, RPM, EED) on the smoothness of the vessel walls
and the apparent size of especially the neck of the aneurysm when varying the
user-controlled threshold parameter (θ). The renderings show a close-up of the
neck and the dome of the aneurysm, the BA and both PCAs, at t = 2.042.

walls, however, was considerably improved by EED, while most of the noise in
these edge regions was retained by RPM.

5 Discussion and Conclusions

Overall, the results of our in vitro experiments suggest that for vessels with
sufficiently large luminal diameter, EED is most suitable: the increase in the
user-dependency of quantifications and visualizations is considerably less than
with UF or GF, and it is better at reducing noise at the vessel walls than
RPM. The sub-optimal performance of EED in vessel segments with very small
luminal diameters is most probably due to the fact that the amount of blurring
in the plane orthogonal to a local gradient is equal in all directions. We suspect
that in order for EED to work adequately also in these cases, it is necessary to
make a distinction between the directions corresponding to minimal and maximal
curvature, which requires the use of second-order information (Hessian). Early
experiments with curvature-based anisotropic diffusion schemes [12] have shown
promising results, but more elaborate evaluations are required to determine the
clinical implications. Other disadvantages of EED are its memory requirements
and its relatively high computational cost. If these are decisive factors, RPM
may be a reasonable alternative, for which more efficient algorithms exist [7].



184 E. Meijering et al.

UF GF RPM EED

θ = 0.2

θ = 0.4

Fig. 6. Endovascular surface renderings of the CAVP illustrating the effects
of the different techniques (UF, GF, RPM, EED) on the smoothness of the
vessel walls and the apparent degree of stenosis when varying the user-controlled
threshold parameter (θ). The renderings show the ECA (left passage) and the
stenosis in the ICA (right passage), viewed from within the CCA, at t = 2.042.
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