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Abstract. Accurate brain tissue segmentation by intensity-based voxel
classification of MR images is complicated by partial volume (PV) voxels
that contain a mixture of two or more tissue types. In this paper 1, we
present a statistical framework for PV segmentation that combines and
extends existing techniques. We think of a partial volumed image as a
downsampled version of a fictive higher-resolution image that does not
contain partial voluming, and we estimate the model parameters of this
underlying image using an Expectation-Maximization algorithm. This
leads to an iterative approach that interleaves a statistical classification
of the image voxels using spatial information and an according update of
the model parameters. We illustrate the performance of the method on
simulated data and on 2-D slices of real MR images. We demonstrate that
the use of appropriate spatial models not only improves the classification,
but is often indispensable for robust parameter estimation as well.

1 Introduction

Previously we presented a fully automated model-based approach for intensity-
based tissue classification of MR images of the brain [1]. The method uses an
Expectation-Maximization (EM) algorithm [2] to iteratively estimate during
classification the parameters of tissue-specific Gaussian intensity models, of a
polynomial model for MR bias field correction, and of a Markov random field
(MRF) prior that models spatial interactions between neighboring voxels. Prior
knowledge about the expected distribution of the various tissue classes in the
image is derived from a digital brain atlas that is co-registered with the image
under study, which allows full automation of the method.

Whereas this technique assigns each voxel to a single tissue type, the limited
spatial resolution of MR imaging and the complex shape of the tissue interfaces
in the brain imply that a large part of the voxels in MR brain images are so-
called partial volume (PV) voxels, i.e. voxels that contain not a single tissue, but
1 This paper is a short version of a technical report KUL/ESAT/PSI/0102. Available:
http://bilbo.esat.kuleuven.ac.be
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rather a mixture of two or more tissue types. In this paper, we therefore extend
our approach by explicitly including a model for such PV voxels. We derive
an EM algorithm for assessing the Maximum Likelihood (ML) parameters of
the resulting image model, and demonstrate that this leads to a general PV
segmentation framework that enables estimation of tissue-specific means and
covariance matrices guided by spatial information, while classifying the image
voxels at the same time.

2 Image Model

Let L = {lj , j = 1, 2, . . . , J} be a label image with a total of J voxels, where
lj ∈ {1, 2, . . . , K}, denotes the one of K non-mixed tissue types to which each
voxel j belongs. These labels are assumed to be drawn according to some prob-
ability distribution f(L | ΦL) with parameters ΦL to be specified further that
imposes certain spatial constraints. Suppose that a non-mixed intensity image
Y = {yj , j = 1, 2, . . . , J} is generated from L by drawing a sample from a
probability distribution f(Y | L, ΦY ) parameterized by ΦY . We assume that the
intensity of each class k is normally distributed with mean µk and covariance
Σk, such that ΦY = {µk, Σk, k = 1, 2, . . . , K} and f(Y | L, ΦY ) =

∏
j f(yj |

lj , ΦY ) =
∏

j GΣlj
(yj − µlj ) with GΣ(·) the zero-mean normal distribution

with covariance matrix Σ. With the exception of an explicit model for the MR
bias field, which we assume here not to be present for the sake of simplicity, this
was the image model used in our previous work [1].

Now an extra step is added, where Y is not directly observed, but downsam-
pled by a factor M to yield a partial volumed MR image Ỹ = {ỹi, i=1, 2, . . . I}
with only I = J/M voxels. The observed intensity ỹi in voxel i of the downsam-
pled image Ỹ is modeled as the sum of the intensities yj of all the subvoxels in
the original image Y that underlie i. In voxels where not all subvoxels belong
to the same tissue type, this causes partial voluming. Let ti be a vector that
contains the relative amount of each class k, k=1, 2, . . .K in voxel i. A value of
tik = 1 for some class k means that all the subvoxels underlying voxel i belong
to class k, whereas a value of tik = 0 indicates that i does not contain class k
at all. It can be shown that the observed intensity ỹi in a voxel is governed by
a normal distribution that only depends on its mixing proportions ti:

f(ỹi | ti, ΦY ) = G
Σ̃(ti)

(ỹi − µ̃(ti)) (1)

with µ̃(ti) = M · ∑k tikµk and Σ̃(ti) = M · ∑k tikΣk.
This model is illustrated in figure 1 on a 2-D example for two classes and

M = 32 subvoxels per voxel. Figure 1f also shows the normal distributions f(ỹi |
ti, ΦY ) for each mixture t = (α, 1−α) with α ∈ {0, 1/M, 2/M, . . . , (M−1)/M, 1},
weighted by the number of times each mixture occurs in the image. Note that
these mixture distributions do not all have the same weight, indicating that
not all mixtures are equally likely. Summing the distributions of all non-pure
mixtures yields a model for the intensity distribution of PV voxels.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. PV image model: (a) label image L with 2 classes drawn according to
some statistical model; (b) intensity image Y obtained from L assuming the
intensity of each class to be normally distributed; (c) downsampled image Ỹ
containing partial voluming; (d) tissue fraction ti1 = 1− ti2 in each voxel i of Ỹ ;
(e) and (f): histograms of Y and Ỹ respectively and their underlying models.

3 Model Parameter Estimation

Given the observed data Ỹ , the aim is to reconstruct the label image L or, more
modestly, to estimate the tissue fractions ti in each voxel. Before these issues
can be addressed, the model parameters Φ = {ΦY , ΦL} need to be estimated
somehow from Ỹ . In this paper, we estimate the parameters that maximize the
likelihood of the data f(Ỹ | Φ) =

∑
L f(Ỹ | L, ΦY )f(L | ΦL) with f(Ỹ |

L, ΦY ) =
∏

i f(ỹi | ti, ΦY ) given by (1). To this end, we use an EM algorithm
that iteratively maximizes the expected value of the log-likelihood log f(Y , L |
Φ) of the unknown data {Y , L}, where the expectation is based on the observed
data Ỹ and the parameters Φ(m−1) estimated in the previous iteration (m − 1)
(see [3] for details):

Expectation step : find the function

Q(Φ | Φ(m−1)) = EL,Y [log f(Y , L | Φ) | Ỹ , Φ(m−1)] (2)

Maximization step: find

Φ(m) = argmax
Φ

Q(Φ | Φ(m−1))
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Because f(Y , L | Φ) = f(Y | L, ΦY ).f(L | ΦL), the expectation function can be
written as Q(Φ | Φ(m−1)) = QY (ΦY | Φ(m−1))+QL(ΦL | Φ(m−1)). Maximization
of QY yields closed-form expressions for estimating the class intensity parameters
ΦY that depend on the posterior probabilities f(ti | Ỹ , Φ(m−1)). These depend
on the prior spatial model f(L | ΦL), for which three different models were
investigated [3]:

Model A: no spatial correlation Every mixing combination t has a spatially
invariant prior probability πt.

Model B: no spatial correlation and uniform prior Every mixing combi-
nation t has a spatially invariant prior probability πt, that is the same for
all non-pure t.

Model C: Markov random field The spatial distribution of labels lj in L is
governed by an Ising/Potts MRF whose parameters regulate how much of
each tissue is present and how voxels of a particular tissue type are clustered.

For models A and B, f(ti | Ỹ , Φ(m−1)) ∝ f(ỹi | ti, Φ
(m−1)
Y ) · π

(m−1)

t with
the prior probabilities πt estimated by maximization of QL(ΦL | Φ(m−1)). For
model C, f(ti | Ỹ , Φ(m−1)) can not be calculated analytically. We therefore
use the MCEM algorithm [4] to approximate the expectation over the labels L
in (2) by sampling the distribution f(L | Ỹ , Φ(m−1)). The MRF parameters are
calculated using the pseudo-likelihood approximation [5].

4 Results

The performance of the 3 spatial models was validated on simulated 2-D data
generated with different parameter sets Φ according to model C, i.e. with the
underlying label image L modeled as an MRF sample. The three spatial models
A, B and C were fitted to the data starting from the same randomized initial
parameters. In all cases, the MRF model C resulted in more accurate classifi-
cations than model A and B [3]. Moreover, models A and B, which are entirely
histogram-based, often failed to correctly estimate the underlying model param-
eters. In many cases the use of prior spatial knowledge as provided by model C
showed indispensable for robust estimation of the model parameters.

Figure 2 shows an example with 2 classes and M = 32 subvoxels per voxel.
Model A fits the histogram well, but the underlying model is not correctly esti-
mated. Since there is no restriction on the weights πt for the mixing proportions
t, the algorithm has simply adjusted these to get a good histogram fit, thereby
setting the prior probability for pure tissue to zero. With model B, all the mixing
fractions corresponding to non-pure tissues are forced to have the same weight,
resulting in the typical flat shape of the total intensity model for PV voxels that
is commonly used in the literature [6,7,8,9]. However, the true mixing fractions
in this example are not equal at all and therefore model B is condemned to fail.
Only model C succeeds to retrieve the correct model parameters.

Figure 3 shows an example for 3 classes and M = 22 subvoxels per voxel.
Because the intensity of voxels mixing the tissues with the lowest and highest
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Simulated data, two tissue types: (a) observed data Ỹ ; (b) histogram of
Ỹ with the underlying model overlayed; (c) model initialization; (d,e,f): resulting
histogram fit obtained with models A, B and C, respectively.

intensity is similar to the intensity of pure voxels of the tissue type with inter-
mediate intensity, model A is severely underconstrained in this case and was
therefore not considered. Model B and C fit the global histogram equally well,
but only model C retrieves the correct model parameters, while model B yields
incorrect parameters that are different with different initializations [3].

Our current implementation of the MRF of model C is only 2-D, implying
that tissue boundaries are assumed to be orthogonal to the image slice. Figure 4a
shows an axial slice of a high-resolution 1 mm isotropic T1-weighted image of the
head through the central part of the brain where this assumption is more or less
valid. Since different combinations of mixing tissues have overlapping intensities,
model A was not considered. Comparing the results obtained with models B and
C, it is clear that the MRF of model C reduces the noise in the segmentations
considerably and forces partial volume voxels to lie on the border between the
constituent tissues, in contrast to model B.

5 Discussion

Our statistical framework for PV segmentation is an extension of the methods
of Choi et al. [10], Pham and Prince [11] and Nocera and Gee [12] when model
C is used. Defining an MRF prior that imposes similar tissue combinations ti

over neighboring voxels, these approaches iteratively assign a mixing fraction ti

to each voxel and update the mean intensity of every pure tissue type. However,
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Fig. 3. Simulated data, three tissue types: (a) label image L; (b) observed partial
volumed image Ỹ ; (c) histogram of Ỹ with the true model overlayed; (d) model
initialization; (e,f) histogram fit obtained with model B and C, respectively.

these methods assume that all tissues have the same diagonal covariance struc-
ture, which does not need to be the case in real MR data, and the estimation
of this covariance is not addressed. Furthermore, the methods in [10,12] use an
MRF that simply imposes similar ti over neighboring voxels, which erroneously
encourages voxels to contain equal amounts of every tissue type everywhere in
the image, in combination with extreme values for the mean intensity of pure tis-
sues [3]. In contrast, our method additionally estimates tissue-specific covariance
matrices as well, and defines an MRF model on subvoxels rather than on the
voxels directly, thereby naturally imposing homogeneous regions of pure tissues
bordered by PV voxels.

Our method is also an extension of the PV techniques of Santago and Gage [8],
Wu et al. [9], Laidlaw et al. [6] and Ruan et al. [7]. These methods estimate their
parameters by fitting the model to the histogram, thereby discarding all spatial
information, and assume that all mixing proportions are equally alike when two
tissues mix in a voxel, similar to our model B. However, the assumption of equally
probable mixing fractions lacks any basis, as can be seen from figures 1f and 2b.
Our model A does not make any prior assumption about the mixing proportions
at all, but this introduces so many degrees of freedom that the model fitting is
severely underconstrained. However, in contrast to [6,7,8,9], our approach allows
incorporating a prior spatial model to guide the model fitting, which allows the
mixing proportions to be non-uniform without making the estimation problem
underconstrained.
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Fig. 4. 2-D MR image: (a) image data Ỹ ; (b) histogram with the model ini-
tialization overlayed; (c,d,e) resulting histogram fit, expected fraction of white
matter and estimated probability for partial voluming between white and gray
matter, obtained using model B; (f,g,h) idem, but using model C.

While there may be many parameter sets that provide a close histogram fit,
what discriminates the true solution is that it provides a meaningful classifi-
cation in the images in agreement with the spatial model. With model C, our
method iteratively interleaves a statistical classification of the image voxels us-
ing spatial information and an according update of the model parameters. Our
results demonstrate that the use of such spatial information during the model
fitting is often required in order to obtain reliable results.

6 Conclusion

In this paper, we presented a statistical framework for PV segmentation that
combines and extends existing techniques. A partial volumed image is consid-
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ered a downsampled version of a fictive higher-resolution image that does not
contain partial voluming, and the model parameters of this underlying image are
estimated using an EM algorithm. This leads to an iterative approach that in-
terleaves a statistical classification of the image voxels using spatial information
and an according update of the model parameters. We have demonstrated on
simulated data that the use of appropriate prior spatial models not only improves
the classification, but is often indispensable for robust parameter estimation as
well. Future work will focus on developing such models that accurately describe
the shape of the brain.
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