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Abstract. We have developed a blood flow waveform shape model using
principal component analysis (PCA) and applied this to our existing
concentration-distance curve matching technique for the extraction of flow
waveforms from dynamic digital x-ray images. The aim of the study was to
validate the system using a moving-vessel flow phantom. Instantaneous
recording of flow from an electromagnetic flow meter (EMF) provided the
“gold standard” measurement. A model waveform was constructed from 256
previously recorded waveforms from the EMF using PCA. Flow waveforms
were extracted from parametric images derived from dynamic x-ray data by
finding the parameters of the shape model that minimized the mean value of our
cost function. The computed waveforms were compared to the EMF recordings.
The model-based approach produced narrower limits of agreement with the
EMF data than our previously developed algorithms and, in the presence of
increasing noise in the parametric images, it out-performed the other
algorithms.

1 Introduction

The algorithms'" that have been previously reported for the measurement of blood
flow in arteries from dynamic digital x-ray images have not fully taken into account
the nature of the blood flow in the target artery. At most, investigators have made
assumptions about the different velocity profiles that exist radially across an arterial
lumen. With the advent of the use of Doppler ultrasound to monitor blood flow in
arteries, it became apparent that the shape and content of the Doppler sonogram was
characteristic of the artery being investigated and the disease state of this artery.
Investigators have attempted to characterize sonograms with a view to distinguish
between healthy and diseased states®”. Our method® of velocity waveform
measurement necessarily over samples the waveform yet is severely noise-limited.
The lower bound of the sampling rate is determined by the distance traveled by the
blood per sampling interval in relation to the sampled vessel length. Therefore, we
hypothesized that the a priori knowledge of the nature of the blood flow through a
target artery may be used to improve the measurement of blood flow through that
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artery using dynamic digital x-ray images. This hypothesis was tested by constructing
a blood flow waveform shape model from many waveforms collected by
electromagnetic flow meter recordings using a blood flow test circuit under varying
conditions of flow. This shape model was then used to constrain the measurement of
blood flow in a blood flow circuit using the concentration-distance curve-matching
algorithm previously developed®.

2 Method

2.1 Physiological Blood Flow Circuit
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Fig. 1. Physiological blood flow circuit. Fig. 2. Programmable vessel manipulator.

Figure 1 shows a schematic of the physiological blood flow circuit used to simulate
pulsatile blood flow in the human circulation. A 15 cm section of silicone tubing was
used to simulate a blood vessel. Date-expired whole blood was obtained and used as
the circulating fluid. Pulsatile flow was generated using a pulsatile syringe pump
(Pulsatile Blood Pump 1405, Harvard Apparatus). This allowed adjustment of mean
flow rate by two means: (1) by altering the pumping frequency; (2) by altering the
stroke volume. A 6mm calibre electromagnetic flow meter (Electromagnetic Blood
Flow Sensor / Electromagnetic Blood Flow and Velocity Meter, Skalar) was placed
downstream from the simulated blood vessel. This provided outputs of instantaneous
and mean flow rate. These were recorded using an analogue recording system
(MacLab 8s, AD Instruments) that was interfaced to a Macintosh notebook. Our x-ray
technique was validated by correlating x-ray measurements with those made
independently by the EMF. The pressure in the circuit was monitored using a pressure
transducer connected to the MacLab. Physiological pressures were maintained by
varying the height of the fluid reservoir. A 4-F catheter was inserted just upstream
from the blood vessel to allow injection of iodine-based contrast medium using a 10
ml syringe. Figure 2 shows the programmable vessel manipulator that simulated
vessel motion such as that seen in the coronary arteries during the cardiac cycle. This
consisted of a geared d.c. electric motor driving a caddy on a linear axis. The motor



In-Vitro Validation of a Novel Model-Based Approach 293

speed was controlled using a pulse-width modulation electronic circuit. The motion of
the manipulator could be programmed using a laptop computer that was interfaced to
the control circuit. The simulated vessel was mounted with one end on the moving
caddy and with the other end fixed. The motion of the manipulator was synchronized
to the pulsatile pump.

2.2 Model Waveform Construction

In order to form a model of the blood flow waveforms that are produced by our blood
flow circuit, we collected sample waveforms from the EMF under varying conditions
of flow. The parameters altered were: (1) the stroke volume of the pump; (2) the
pumping frequency; (3) the mean pressure; (4) the output impedance; (5) the vessel
size; and (6) the rate of contrast medium injection. For each flow condition
approximately 10 seconds of the flow signal was captured that included a 3 second
period of contrast medium injection. Figure 3 shows a typical blood flow signal
recorded from the EMF. For each recording the individual cycles were isolated. This
was performed automatically by software that identified the systolic foot of each
cycle in the recording by searching for 5 consecutive positive gradients that exceeded
a predefined threshold. The foot was then marked as the first point in this series of
gradients. The cycles isolated during the contrast injection phase were used as input to
the principal component analysis.

450 500
Contrast Injection Phase
400 450
400
350
350
300 £
= E 0
% 250 g 250
i.; 200 E 200
3 150 & 150
100 10
50
50
0
4 T i i i i i i i T 5 0 10 20 3 4 50 60 70 80 9 10
1 2 3 4 5 6 7 o % Cardiac Cycle
-50
Time secs
Fig. 3. An example of a recording from the Fig. 4. Mean model waveform shape.

electromagnetic flow meter showing
identification of the systolic feet.

Each cycle was normalized over time by resampling by linear interpolation using

S =100 sample points. The mean flow rates ranged from 43 ml/min to 300 ml/min.
The instantaneous flow rates ranged from —175 ml/min (reverse flow) to 901 ml/min.

In total N =256 input waveforms were used. Each input waveform P, consists of

S sample points {qil’in’qi3’ ..... »q;s } The input waveforms were averaged to

produce a mean waveform shape (figure 4)
_ i=N
P=LSp. M
NG
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The input waveforms were then transformed by subtracting the mean waveform shape

dP, =P, —P = {dg,.dq,,,dq;,........dq} for |1Si< N | @)

The S XS covariance matrix C was calculated
1 &y .. 3
quﬁ;quixqujforlﬁl,]SS. 3)

Eigen analysis of this real symmetric covariance matrix was performed. This yielded
S normalized eigenvectors € ; with corresponding eigenvalues /'Lj (1<j<8).

The eigenvectors were sorted in order of decreasing eigenvalue. The eigenvectors

form a basis vector set for the transformed input waveforms dP,. Each eigenvector

accounts for one mode of variation of the mean waveform shape P with variance

equal to the corresponding eigenvalue. Any of the input waveforms P, can now be

expressed as the sum of the mean waveform shape and a linear combination of the
eigenvectors

_ =S “)
P =P+ we forISi<N
j=l1
where W;; is the weighting factor for eigenvector €; for waveform I.
The percentage variation V% ; attributed to eigenvector € can be calculated as
A, _ 5)
Vo, =5 x100for 1< j<S§

i=S

4

i=l1

where A ; is the eigenvalue associated with eigenvector € ;-

Figure 5 shows cumulative percentage variation contributed by the first 20
eigenvectors. It was found that the first 10 eigenvectors are needed to explain 99.7%
of the total variation in the waveform shape. Figures 6 shows the effect of the first
eigenvector on the mean shape. It is possible with PCA to see that a particular
eigenvector affects a particular aspect of the shape, however, this is not always the
case. From the results it can be noted that: (1) the first eigenvector primarily affects
the amplitude of the systolic peak; (2) the second eigenvector affects the placement of
the systolic peak; and (3) the third eigenvector affects the gradient of the falling edge
of the systolic peak. These observations are generalized and each eigenvector has
more than just one effect on the waveform shape. The less significant eigenvectors
have very little effect on the waveform shape. Therefore, it is possible to reconstruct
each of the input waveforms by finding only the weighting factors for the first few
eigenvectors. The percentage noise in the input waveform signals was estimated to be
0.5%. Therefore, it was decided to use the first 10 eigenvectors to characterize the
waveform shape since this number explained more than 99.5% of the total variation.



In-Vitro Validation of a Novel Model-Based Approach 295

100 7

800
%7 700
90 600
P 500

w0 £ 40

w
=3
8

7 0

100
65 1 0 T T T T )
(R 4100 20 40 60 80 100
12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 % Cardiac Cycle

Eigenvector Number

Cumulative % Variation

Flow Rate ml

70 1

60

Fig. 5. Percentage cumulative variation Fig. 6. Effect on the mean waveform shape
accounted for by the first 20 eigenvectors. of'adding or subtracting 1 and 2 standard
deviations of the first eigenvector.

2.3 X-ray Image Acquisition

For the x-ray experiment, a 6 mm internal diameter vessel was used. The vessel
manipulator gave a maximum vessel speed of 29 mm/sec and the range of vessel
travel was 40 mm. The frequency of motion and of the pump were set to 43 per min.
X-ray images were acquired using an Advantx DX (GE Medical Systems) x-ray
system. The images were transferred to a PC in real-time by digitisation of the PAL
composite video signal normally available for recording of images to a video tape
recorder. The x-ray system was set for 5 ms pulsed mode at 25 frames per second.
The image acquisition was carried out by a PC workstation using a Pulsar frame
capture card (Matrox Imaging). Images were digitised on a 512 x 512 pixel matrix at
8 bits grey depth and image grey level was proportional to the logarithm of the x-ray
image brightness. The x-ray tube voltage was 85 kV. The simulated blood vessel was
placed in the isocentre of the x-ray system. The stroke volume of the pulsatile pump
was adjusted to achieve the required mean flow rate and the system was allowed to
reach a steady state. Initially a short sequence of images covering at least 1 cycle was
acquired prior to the injection of iodine contrast medium, the pre-contrast sequence.
This was followed by the injection of the contrast medium via a catheter just upstream
from the segment under investigation. The rate of injection was varied depending on
the mean flow rate from 2 ml/sec to 3 ml/sec over 3 seconds. A 3 second acquisition
of 75 images was performed during the contrast injection phase. This sequence is
known as the post-contrast sequence. Biplanar acquisition was used to determine the
three-dimensional course of the blood vessel. For each flow rate, one set of images
was acquired with the x-ray c-arm at the L40° position and one at R40°. To calibrate
the geometry of the x-ray system, a purpose designed 60 mm Perspex cube with 14
radio-opaque markers at known positions was used. Images of the cube were acquired
under the same two projections used for imaging the blood vessel.

To enable quantification of the iodine in the blood vessel, image subtraction was
carried out. The technique of phase-match subtraction was used. The images in the
pre-contrast sequence were matched in postion of the cardiac cycle to the images in
the post-contrast sequence using the extremes of vessel motion for synchronisation.
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The pre-contrast images were then subtracted from the post-contrast images to leave
just the iodine signal.
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Fig. 7. Example of a parametric image produced from the angiographic data.

The subtracted x-ray images from the biplanar acquisition for each experiment were
then analyzed on a computer workstation using a software package developed by our
group (SARA — System for Angiographic Reconstruction and Analysis)”. This
produced a parametric image from the angiographic data in which the image grey
level represents contrast material concentration as a function of time and distance
along a vessel segment (figure 7). In total 10 experiments were performed for
different flow rates. This yielded 19 complete cardiac cycles for comparison with the
EMF recordings.

2.4 Extraction of Blood Flow Waveforms from Parametric Images

The concentration of contrast medium along an arterial vessel segment can be
expressed as a function of distance along the vessel and of time, C(x,f). The
distance x is measured in millimeters and 0 < x < N . The segment length is then
(N +1) mm. The time ¢ is measured in frames and 0 < ¢ < T . This gives rise to a
series of concentration-distance curves C(x,0),C(x,1),C(x,2),.....,C(x,T)
where T is the last frame in the series. If curve C(x,?) is shifted by s mm with

respect to curve C(x,7+1), the cost function W(s,?) is calculated as
2

1 x=N-s (6)
Y(s,t) =— C(x,t)—-C(x+s,t+1)) ifs=20
(0=~ 2( (x,0)=C(x+s,0+1)) if s
1 x=N-s 2
Y(s,t)=— Cx—s5,t)—C(x,t+1)) ifs<O0.
(0=~—7 FO( (x=s5,0)=C(x,t+1)) if s

This cost function is the mean sum of squared differences between consecutive
concentration-distance curves. The velocity V(¢) in millimeters per second for shift
S is given by

v(t) = s X FR where FR is the frame rate in frames per second . (7
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The original concentration-curve matching algorithm (ORG algorithm) selects the
value of § for which W(s,#) is minimum. This value, § opt » 18 the value for which
there is the best match between consecutive concentration-distance curves. The
estimated contrast medium velocity is then given by

v(t)=s,, XFR . ®)

In order to make this algorithm less susceptible to noise in the angiographic data,
polynomials can be fitted to the concentration-distance curves prior to carrying out
the curve matching procedure. This is termed the polynomial approximation
algorithm (PA algorithm). The order of the polynomial used is dependent on the
length of the vessel segment. For this study, fourth order polynomials were found to
model the shape of the concentration-distance curves without modeling the noise
component.

Instead of choosing the value of the shift that produces the minimum value of the cost

function W, the model-based algorithm (MB algorithm) constrains the value of the
shift chosen by using the waveform shape information. Let the volumetric flow

waveform be G(¢) where ¢ is the time measured in percentage cardiac cycle and

volumetric flow is measured in millilitres per minute. Using the waveform shape
model, G(?) is estimated by

_ =S 9
GH)=P+ 2 we, where S is the total number of eigenvectors . ©)

i=1

The model fitting task entails selecting the values of W, that minimize the mean

value of the cost function W¥(s,?).
Step 1:
The concentration-distance curve function C(x,#) will contain one or more cardiac

cycles depending on the cardiac rate and the number of frames acquired. The cycle for
which the shape model is to be fitted is identified using the velocity waveform

derived from the original concentration-curve matching algorithm. £ is identified as

the starting frame for the cycle and f, is identified as the end frame of the cycle. The
cycle length is then given by

T =t,—t +1. (10)

The waveform G(t) is rescaled in the time axis so that 0 <¢# <7 —1.
Step 2:
The flow waveform G(?) is converted into units of mm shift per frame by

G() (11)

where A is the vessel cross-sectional area

s(t) =
® kx AXFR

and k = 6 is the unit conversion factor .
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Step 3:
The cost D is calculated by

(=2 12)
D=—N W(s(t—1,),1) .
TU t=t,

The values of the weighting factors W, are found which minimize the cost @ . This

is done by the downhill simplex method. Only 10 eigenvectors were used for the
generation of the fitted waveform.

3 Results

Figure 8 shows the model-based x-ray computed flow values and the EMF recording
for 1 of the 10 experiments. The waveform produced by the MB algorithm follows the
EMF waveform closely and is less noisy than the waveforms produced by the ORG
and PA x-ray algorithms.
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Fig. 8. An example of blood flow waveform produced by the model-based x-ray algorithm and
the corresponding waveform from the electromagnetic flow meter.

Figure 9 and figure 10 show scatter plots for instantancous flow values and average
flow rates produced by the MB algorithm. Table 1 summarizes the results obtained
using all three algorithms for instantaneous and average flow comparison with the
EMF. The correlation between instantaneous and average flow rates between the x-
ray measurements and the EMF was highly significant for all three algorithms. Each
algorithm produced a mean over-estimation of both instantaneous and average flow
but the limits of agreement'” as expressed by the 95% confidence interval for the
difference between x-ray and EMF flow values were narrower for the model-based
algorithm.
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MB Algorithm ORG Algorithm PA Algorithm
Instantaneous Flow Correlation 0.934 0.908 0913
Mean Difference In Instantaneous Flow 44.4 17.1 29.1
And 95% CI ml/min ( X-Ray — EMF ) -266.0 to 354.7 -346.8 to 380.9 -314.0 to 372.1
Average Flow Correlation 0.906 0913 0.909
Mean Difference In Average Flow 37.4 24.2 35.1
And 95% CI ml/min ( X-Ray — EMF) -41.5t0116.3 -70.2to0 118.7 -53.8t0123.9

Table 1. Summary of results of instantancous and average flow measurement by the x-ray
techniques compared to the electromagnetic flow meter measurments. p<0.001 for all

correlation coefficients.

In order to study the effect of image quality on the performance of the algorithms,
different amounts of Gaussian-distributed noise were added to one of the parametric
images obtained. Gaussian noise with standard deviation of 1% to 30% of the
maximum pixel grey value in the parametric image was used. Figure 11 illustrates the
correlation with the EMF of instantaneous flow values obtained by the three
algorithms as function of added percentage noise. It can be seen that there is
minimum reduction of correlation for the MB algorithm and maximum for the ORG
algorithm, with the PA algorithm performing marginally better than ORG algorithm.
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Fig. 11. Variation of correlation between x-ray and electromagnetic flow meter instantaneous
values as a function of percentage added Gaussian noise.



300 K. Rhode et al.

4 Conclusion

We have demonstrated a novel model-based algorithm to measure blood flow from
dynamic digital x-ray images of arteries. The model-based algorithm has shown
narrower limits of agreement with the electromagnetic flow meter measurements
when compared to our existing algorithms for both instantaneous and average flow
values. Also, this algorithm has been shown to be less sensitive to degradation in
image quality than the other algorithms. Compared to the images of our vessel
phantom, clinical angiograms will be of poorer image quality. Factors such as scatter,
beam hardening, over-lapping vessels, and patient motion will contribute to reduce
image quality. The model-based algorithm is therefore likely to give more reliable
estimates of blood flow from clinical data than our previously reported techniques.
We a view to test this algorithm clinically, we are collecting blood flow waveforms
from target arteries in healthy volunteers using Doppler ultrasound. These waveforms
will be used to form waveform shape models for these different arteries.
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