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the heart wall motion in the signal.  The 0.6 Hz signal corresponds to the chest wall
(respiration was set at  45 breaths per minute) and the 5.5  Hz component corresponds
to the heart wall motion, (5.5 Hz
was the primary frequency in the
recorded ECG signal).
Modeling the signal using the
TFLC algorithm resulted in a
signal that had a mean error of
only 10%.  Figure 5 show the
modeled signal plotted with the
recorded signal that was used.
As demonstrated with this
model, even with a complex
biological signal, the TFLC can
model the signal to a high
accuracy.

(A)

(B)

Figure 4: The comparison of the AFLC and TLC algorithms under different signal to noise
ratios (SNR).  For the high SNR case (A) where the SNR is �4 dB, the TFLC has a mean
error of 10.3% while the WFLC has a mean error of 12.3%.  For the low SNR case (B),
where the SNR is �9 dB, the TFLC has a mean error of 23.1% and the WFLC has a mean
error of 34.1%.  In both cases, the TFLC outperforms the WFLC, even in noisy environments
(low SNR).

Figure 5: The recorded complex signal of the rat chest
wall and heart wall displayed with the resulting
modeling signal.  The model was generated with the
TFLC algorithm.

Recorded Signal

Modeled Signal
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4. Conclusions

Complex physiological motion can severely limit a surgeon�s ability to perform
accurate and efficient procedures.  In many cases, as in beating heart surgery, the
motion limits surgery only to the simplest of procedures.  If this motion can be
filtered out of the surgical field without being invasive, the possibilities of minimally
invasive surgery will increase dramatically.

This paper demonstrates the functionality and performance of adaptive algorithms
and their ability to model complex biological signals.  Future implementation of these
adaptive algorithms into high-speed robotic actuators will allow motion to be both
adaptively modeled as well as use this model as a next step predictor in an attempt to
move the tool time in synchrony with the tissue motion.  Therefore, from the point of
view of the actuator�s tool tip, the field will be approximately motionless, as the
motion has been filtered out.  With the use of adaptive algorithms, motion within a
surgical field can be greatly reduced or even eliminated, making procedures that were
impossible or incredible difficult, something that is within reach for an average
surgeon.
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