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Abstract. In precision computer and robotic assisted minimally invasive
surgical procedures, such as retinal microsurgery or cardiac bypass surgery,
physiological motion can hamper the surgeon’s ability to effectively visualize
and approach the target site. Current day stabilizers used for minimally
invasive cardiac surgery often stretch or pull at the tissue, causing subsequent
tissue damage. In this study, we investigated novel means of modeling Z-axis
physiological motion and demonstrate how these models could be used to
compensate for this motion in order to provide a more stable surgical field. The
Z-axis motion compensation is achieved by using a fiber-optic laser sensor to
obtain precise displacement measurements. Using a weighted time series
modeling technique, modeling of rodent chest wall motion and heart wall
motion was accomplished.  Our computational methods for modeling
physiological motion open the door for applications using high speed, high
precision actuators to filter motion out and provide for a stable surgical field.

1. Introduction

In order to perform accurate surgical procedures, surgeons need a well-exposed and
immobilized target site. Creating a well-exposed bloodless surgical field is not as
difficult as creating a motionless surgical field. Often moving organs, such as the
beating heart, present an added challenge for surgeons to overcome the physiological
motion. In cardiac surgery, the heart is traditionally stopped using cardiopulmonary
bypass (CPB) to stop this motion. The use of CPB, however, causes many damaging
effects to the patient’s blood, and often leads to higher costs and recovery times [1].
Even with current day minimally invasive procedures, which are aimed to reduce
blood trauma and post-operative complications [2], physiological motion can severely
impair the ability of surgeon to effectively operate. During procedures such as
minimally invasive direct coronary artery bypass (MIDCAB) surgery, or surgery on a
beating heart, sutures placed by a surgeon often rip or tear due to the physiological
motion of the heart, which can exceed 1.3 cm of outward expansion [3]. Several
methods have been applied to this problem of dealing with motion in the surgical field
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in an attempt to eliminate the hindrances and try to increase the performance of the
surgeon.

Current day commercial solutions to the problem of physiological motion involve
the use of tissue stabilizers. These stabilizers either use pressure [4] or suction [5] on
the tissue to achieve a psuedo-motionless environment. The stabilizers that work by
means of pressure only work on grafting to the exterior surfaces of the heart. Suction
methods often damage the myocardial tissue, even when used for short periods of
time [6]. The use of motion platforms that moves the surgeon’s hands in synchrony
with either a set of oscillatory motors and pacing the heart [3], or optical and
mechanical sensors with feedback [6] have been published. These methodologies
have shown that surgeons can perform delicate tasks, such as anastomosis on a
moving surface, but include hindrances such as being cumbersome, or invasive.

The ideal solution for motion compensation during surgical procedures would be to
provide motion-tracking capabilities using algorithms to filter out the motion, while
using high precision robotic systems through minimally invasive ports.

We propose a solution involving the use of novel adaptive motion tracking
algorithms to compensate for periodic and quasi-periodic physiological motions.
Adaptive filtering, which has been around since the 1950’s to study periodic signals
[7], allows modeling of the physiological information in an updateable model. By
obtaining the tissue surface displacement measurements, we are able to create
adaptive models of the both chest wall and heart wall motion from a surgically
prepared rodent. In this paper, we compare several different adaptive algorithms and
are able to determine the characteristics and uses of the algorithms for the motion
compensation problem. Although it is beyond the scope of our experiments, given
these adaptive models, a high speed robotic actuator would be able to compensated
for the motion by using the models as a motion predictor, and keeping the tissue
surface approximately still from the perspective of the tool on the robotic actuator.

2. Methods

A. Rat Chest Wall and Heart Wall Model

In order to simulate physiological motion for our algorithms, rodent chest wall and
heart wall motion was exposed during our surgical procedure. To provide controlled
breathing patterns, the test subjects (8 Wistar rats, 300 £ 25g) underwent anesthesia
and were placed on ventilator systems for intubation. The subjects were anesthetized
with 4% halothane and 50:50% nitrous oxide:oxygen, in a small place chamber. Once
unconsciousness, the rats was placed in a supine position and two needle electrodes
were inserted in the arm and leg of the rat to provide an electrocardiogram (ECG) for
reference purposes.

For chest wall motion measurements, the chest of the rat was shaved to provide a
smooth and clean surface for measurement. The recording instrumentation was
placed next to the rodent, with the extension arm and displacement sensor placed
directly lcm above the chest. Measurements were taken for 2 minutes intervals and
repeated 3 times before the sensor was moved to a different portion of the chest. To



Surgical Motion Adaptive Robotic Technology (S.M.A.R.T) 319

keep the data synchronized with the ECG data, it was recorded via the same A/D
converter and Pentium level computer.

After the chest wall measurements were concluded, the rats were subjected to
partial thoracothomy on the left side, about halfway down the ribcage, to provide
access to the heart. After this was completed, the heart could be seen and the fiber
optic probe attached to the instrumentation could be carefully inserted to within 1cm
of the heart wall. Again, measurements were taken for 2 minute intervals and
repeated 3 times before recording from a different angle.

B. Instrumentation Setup

For our experiments, we used a M-511 series linear stage micropositioner from
Physik Instruments (Waldbronn, Germany), which provides 0.1 micrometer minimum
incremental motion and a one micrometer full travel accuracy, as our micropositioner
and the basis for our microsurgical robotic arm for recording. This microsurgical
robotic arm consists of the micropositioner, a base with an x-z brace that allows for a
z-axis setup, an extension arm, and a mount for the displacement sensor (Figure 1).
The arm was extended 18 inches out from the faceplate of the M-511, and the fiber
optic probe was held in place to record the displacement.

For the recording of I
biological tissue displacement, Daé;‘:;‘:f"’”“\
we used a D169 fiber optic Extensicn O
displacement  sensor  from i
Philtec, Inc. (Annapolis, MD
USA), which has a linear ~
measurement range of 0.8 to 3 Figi;b‘liﬂtic
21.6 mm, with an operating Robotic
resolution of 3.18um.  The En—— ser
output of the sensor provided a th‘;;:f:‘r’lgi :-_:.:—'_— _ >
0 to 5 V analog signal that was . — Dieplacement

directly proportional to the ! !
distance being measured. The
output was calibrated with a
simple y = m(x) + b equation,
using several known distances
and a simple best fit algorithm.
The analog signal from the fiber optic sensor was converted into a digital signal with
the use of a Daytronic 2160 Digital Panel Meter (Daytronic Inc, Dayton, Ohio). The
digital signal was then transferred to a computer for recording through a RS232 serial
port. The acquisition software was written on a Windows 9X platform using Visual
C++ (Microsoft, Redmond, WA.) and the analysis was performed in MATLAB
(Mathworks, Natick, MA).

Figure 1: The data acquisition setup for our
experiments. The fiber optic probe used to record
physiologic motion, was positioned and calibrated with
the use of the robotic actuator depicted above.

C. Adaptive Algorithms

Adaptive filters and algorithms have been around since the late 1950’s as a type of
self-learning filter [7]. These filters have a set of predetermined initial conditions,
and are able to learn input statistics progressively, and adjust its coefficients in order
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to minimize error criterion. In static environment, these filters converge to optimum
“Wiener” filters after successive iterations [8]. Windrow and Hoff’s least mean
square (LMS) algorithm is one of the most widely used adaptive filters [9].

Certain physiological motions, such as heart wall and chest wall motion in our
experiments, can be modeled as periodic signals that repeat consistently with a set
reference, such as heart beat or respiratory rate. A discrete Fourier series model
(FSM) can be used to represent the periodic components of certain physiological
motions [10]. In the FSM equation (Equation 1), w, is the fundamental frequency, M
is the model order required to cover the entire signal bandwidth, and {a,, b,,} are the
m™ Fourier coefficients of the periodic signal. The assumption here is that
physiological motion can be broken down into discrete sinusoidal components and
then can be recomposed by summing weighted versions of the sinusoids.

M
s(k) = Y a,, sin(mwyk )+ b, cos(maw,k) (1)
m=1

In the Fourier Linear Combiner (FLC) algorithm, the reference signal is comprised
of different harmonics of the defined fundamental frequency (Equation 2). The
reference signal is used to create a model of the input signal. X consists of a sine and
cosine term for each of m harmonics, and depending on the model order of our input
signal, this can be truncated to only a few harmonics without significant distortion.

X (m, k) =[sin(mw,k);cos(mw,k)]" sm=1,.., M 2

The weight vector, Wk, is used to create a filtered output that models the observed
signal, and thus compensating for the periodic physiological motion (Equation 3).
The modeled signal is the weighted sum of the input sinusoids, thus the filtered output
is found by taking the inner product of the input vector and the weight vector, which
is the instantaneous estimate of the Fourier coefficients. Weights are updated using
mean squared error method between the modeled and reference signal. To reduce the
computational load, the model order, M, is chosen so that the truncated series
represents more than 95% of the signal power.

W(k)=[w,,w, ""’WZM—I’WM/I]T 3)

The FLC algorithm has been shown to be computationally inexpensive as
compared to other adaptive filter [11], have inherently zero phase [12], and has an
infinite null [13]. FLC can be viewed as an adaptive notch filter at wy, with width
equal to the adaptive gain parameter, m [13]. The time constant of the filter is a
representation of its memory, or the number of sample points it “remembers” in order
to compute the estimates.

The FLC, however, operates at a fixed frequency, and cannot compensate for
changes in both frequency and amplitude. The Weighted Frequency Fourier Linear
Combiner (WFLC) forms a dynamic truncated Fourier series model of the desired
input signal, and adapts to frequency of the model as well as the Fourier coefficients
[14]. The fundamental frequency in the FLC algorithm, wy, is replaced by a set of
adaptive frequency weights, wy,. Thus the modeled signal is no longer represented by
inner product of the weights and reference signal, but by Equation 4. Using the
simplified approach underlying the LMS algorithm, an adaptive recursion for wy, can
be created in the same amount of time using Equation 5. An adaptive gain parameter,
Up, has been added to the frequency weights in order to tune the filter. Equation 5 is
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used to update the frequency weights, and the rest of the algorithm proceeds similar to
the FLC algorithm. It has been published that for small enough m,, wy; actually
converges to the frequency of the sinusoidal input signal [15]

M
d (k)= Z[er SIN(rwo KM W,y cOS(rwg, k)] S

r=1

Wy, =Wy, —2UE; (5)

In cases like ours, it is important to have a fast tracking algorithm with minimal
misadjustment, to avoid the loss of data. To accomplish this, we added a variable step
size LMS algorithm [16] to our adaptive algorithm to create an Adaptive Fourier
Linear Combiner (AFLC). The gain parameter, i in Equation 5, is now represented
by a dynamic gain parameter, u, as in Equation 6 and is adjusted by square of the
prediction error. Since only one more update in needed is each step of the algorithm,
the AFLC algorithm is only minimally more complex than the FLC algorithm, but has
adaption capabilities.

Wia =W, +21e X, (©)

For applications, involving complex signals, neither the AFLC Algorithm nor
WFLC algorithm alone can compensate for such a signal.  To solve this, we
employed a technique that uses both the AFLC algorithm and WFLC, in order to
model the signal, named the Tiered Fourier Linear Combiner (TFLC) algorithm. In
this algorithm, the recorded signal passes through an AFLC routine, which results in a
modeled chest wall signal and an error component. This error component is then
passed through a WFLC routine to result in a modeled heart wall signal. The two
modeled signals are then simply combined to produce the modeled version of the
original complex signal.

3. Results and Discussion

A. Characterization of the FLC and WFLC Algorithm for Rat Heart Wall Data

A 30 second segment of the rat heart wall data is run through the FLC algorithm.
Trials were run for model order (M) set at 2™ 3 and 4™ order. For each value of M,
the data was iterated through a series of u values, which are the adaptive gain factor,
and the resulting percent error was recorded. This data is summarized in Figure 2,
where we can see that as expected, increasing the u value helps reduce the error
signal. Also we see that at higher u values, increasing the model order helps lower
the percent error; however at lower u values the difference within model orders is not
as significant.

To better understand the advantages of the WFLC over the FLC, the data used in
Figure 2 were analyzed using the WFLC algorithm, where the recorded ECG signal is
set to the reference signal. The data are summarized in Figure 3, where we can see a
drop in percent error with an increase in u values. With the WFLC algorithm,
however, the model order M does not have as much of an effect. The WFLC
algorithm’s performance is more independent of model order then the AFLC
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algorithm. Also, we see that with the WFLC algorithm we are able to achieve a lower
percent error than with the FLC algorithm, at all model orders.

B.  WFLC and TFLC 35 4

Algorithms Performance 30 FLC Algorithm
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varying SNR, we used : )

ded h 1 (left variable u, the performance of the FLC algorithm was
recorded pure chest wall (le tested for three different M orders (2", 3, and 4™

side of the rat’s chest) as the 80 -

signal, and recorded data of WFLC Algorithm

the rat’s heart wall to ol

represent the noise on the . 4

heart wall. By varying the E - 2nd Order
amplification of the ‘noise’, E = =& 3rd Order
several different signals of & o - 4th Order
different SNR were created.

Figure =~ 4  shows  the 07 »

performance of the WFLC 5 : : , : ,
algorthm compared to the ] Doz 004 008 008 a1 012
TFLC for different SNR Mo Values

input signals. For the higher Figure 3: Performance analysis of the WFLC algorithm
SNR signal (Figure 4a), the for different values of u and different M orders @, 3",
TFLC had an mean error of and 4™ Unlike the FLC algorithm, the WFLC’s
10.3%, while the WFLC performance is not as dependent on the order of M.

resulted in a 12.3% error.

For the lower SNR case (Figure 4b), the TFLC resulted in a 23.1% error, while the
WFLC resulted in a 34.1% error. In both cases, the TFLC outperforms the other
showing its resilience within a noisy environment.

C. Modeling of Complex Signal with the TFLC Algorithm

We used chest wall recordings from over the heart as a complex signal to be modeled
by the TFLC algorithm. The biological motion recorded by the fiber optic sensor is
considered complex because it contains both motion from the respiration and motion
from the heart wall underneath the surface of the skin. By taking the FFT of the
recorded data from the complex motion, two strong spikes were seen in the spectral
plot. The stronger of the two spikes is seen at 0.6 Hz and the second non-harmonic
spike was at 5.5 Hz. From this observation, we can see both the chest wall as well as
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Figure 4: The comparison of the AFLC and TLC algorithms under different signal to noise
ratios (SNR). For the high SNR case (A) where the SNR is —4 dB, the TFLC has a mean
error of 10.3% while the WFLC has a mean error of 12.3%. For the low SNR case (B),
where the SNR is —9 dB, the TFLC has a mean error of 23.1% and the WFLC has a mean
error of 34.1%. In both cases, the TFLC outperforms the WFLC, even in noisy environments
(low SNR).

the heart wall motion in the signal. The 0.6 Hz signal corresponds to the chest wall
(respiration was set at 45 breaths per minute) and the 5.5 Hz component corresponds
to the heart wall motion, (5.5 Hz
was the primary frequency in the
recorded ECG signal).
Modeling the signal using the
TFLC algorithm resulted in a
signal that had a mean error of
only 10%. Figure 5 show the
modeled signal plotted with the
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4. Conclusions

Complex physiological motion can severely limit a surgeon’s ability to perform
accurate and efficient procedures. In many cases, as in beating heart surgery, the
motion limits surgery only to the simplest of procedures. If this motion can be
filtered out of the surgical field without being invasive, the possibilities of minimally
invasive surgery will increase dramatically.

This paper demonstrates the functionality and performance of adaptive algorithms
and their ability to model complex biological signals. Future implementation of these
adaptive algorithms into high-speed robotic actuators will allow motion to be both
adaptively modeled as well as use this model as a next step predictor in an attempt to
move the tool time in synchrony with the tissue motion. Therefore, from the point of
view of the actuator’s tool tip, the field will be approximately motionless, as the
motion has been filtered out. With the use of adaptive algorithms, motion within a
surgical field can be greatly reduced or even eliminated, making procedures that were
impossible or incredible difficult, something that is within reach for an average
surgeon.
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