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Abstract. This paper presents a methodology of creating a statistical atlas of spatial
distribution of prostate cancer from a large patient cohort, and uses it for designing
optimal needle biopsy strategies. In order to remove inter-individual morphological
variability and determine the true variability in cancer position, an adaptive-focus
deformable model (AFDM) is used to register and normalize prostate samples.
Moreover, a probabilistic method is developed for designing optimal biopsy strate-
gies that determine the locations and the number of needles by optimizing cancer
detection probability. Various experiments demonstrate the performance of AFDM
in registering prostate samples for construction of the statistical atlas, and also vali-
date the predictive power of our atlas-based optimal biopsy strategies in detecting
prostate cancer.

1 Introduction

Prostate cancer is the second leading cause of death for American men. Transrectal
Ultrasonography-guided symmetric needle biopsy has been widely used as a gold
standard for the diagnosis and staging of prostate cancer. However, biopsy is currently
performed in a rather empirical way, since cancer is mostly undetectable in the rou-
tinely used ultrasound images. This results in a significant number of prostate cancer
cases being undetected at their initial biopsy. For example, the systematic sextant
biopsy protocol [1] is the most common biopsy protocol. However, some studies have
shown that this protocol results in a positive predictive value of only around 30% [2].
Other clinical studies have suggested that the sextant technique may not be optimal
and have investigated new biopsy protocols that might yield significantly better results
[3,4]. Obviously, if the biopsy protocol can be optimized to increase the chances of
detecting prostate cancer, according to some objective and quantitative criteria, then
significant improvement in diagnostic accuracy should be expected.

Some researchers have investigated the possibility of using a large number of pa-
tient histopathological images to determine prostate regions that are most likely to
develop cancer, and therefore should be sampled during biopsy [5]. Those techniques,
however, are limited by inter-individual morphological variability, which reduces both
the statistical power in detecting associations and the spatial specificity of these meth-
ods, which is often limited to relatively coarse subdivisions of the prostate. In this
paper, we propose a methodology that overcomes both of these limitations. In order to
reduce inter-individual variability, we use AFDM [6,7], which spatially normalize the
prostate images to a canonical coordinate system with high accuracy. With accurate
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registration of the prostate images of a large number of patients, a statistical atlas of
cancer distribution can be created and further applied in suggesting optimal biopsy
strategies. As to the statistical analysis, we not only look at the probability of devel-
oping cancer at individual locations, but also develop a full statistical predictive model
that takes into account the spatial correlation of cancer incidence between different
prostate regions. Our rationale is that regions between which cancer incidence is very
highly correlated need not be sampled simultaneously, as opposed to regions between
which cancer occurrence is relatively independent. These models are used in an opti-
mization framework for estimation of optimal needle biopsy strategies.

This paper is organized as follows. In Section 2, we build a methodology for de-
formable registration and normalization of prostate samples. In Section 3, we create a
statistical atlas of the spatial distribution of prostate cancer and develop a probabilistic
method for designing optimal biopsy strategies that best predict the presence of pros-
tate cancer in a particular patient. In Section 4, we demonstrate the performance of
AFDM in registering prostate samples, and validate the predictive power of our atlas-
based optimal biopsy strategies in detecting clinically significant cancer in our exist-
ing prostate database.

2 Spatial Registration and Normalization of Prostate Samples

The major problem in developing a spatial normalization method is determining cor-
respondences. We have developed a deformable shape modeling framework, for seg-
mentation and reconstruction of anatomical shapes, and for determining morphology-
based correspondence across individuals, from tomographic images [6,7]. This
framework is based on our AFDM. In AFDM, for a given set of structures, a shape
model is first constructed to represent a typical shape of these structures. This shape
model includes two kinds of information: information about the geometry of the
structures and information about the statistical variation of these structures within a
given population. In the application stage, the deformable shape model is placed in an
image with the structures of interest, and is subsequently let free to deform according
to features extracted from the images, seeking objects that have similar geometry, but
also objects that fall within the expected range of shape variation.

In this section, we use AFDM as a registration method to spatially normalize the
external and internal structures of the prostate samples, such as the capsule and the
urethra. In particular, we select one typical prostate as the template (Fig. 1a), and
other subjects are warped into the space of this template. The warping is performed in
two stages. First, AFDM is used to reconstruct the shape of each structure and to de-
termine point correspondences between the subjects and the template. Second, these
point correspondences are interpolated elsewhere in the space of the prostate by using
an elastic warping technique [8]. Since AFDM is the cornerstone of our deformable
registration method, it is particularly redesigned for prostate application next.
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Fig. 1. A prostate surface model. (a) 3D display, and Fig. 2. Attributes defined as volumes of
(b) a cross-section. tetrahedra in 3D.

2.1 Spatial Connections between Distant Structures of the Prostate Surface
Model

AFDM comprises several inter-connected surfaces, each representing the anatomy of a
structure of interest. Fig. 1a shows a 3D prostate model with two surfaces that repre-
sent the capsule and the urethral boundaries. In order to allow a deformation imposed
on a segment of one surface (such as the capsule) to rapidly propagate to the segments
of the other surface (such as the urethra) in a hierarchical fashion, connections be-
tween these two surfaces are added (gray arrows in Fig. 1b), effectively rendering
distant surface patches as neighbors. Therefore, at a coarse scale, large segments are
connected together, and thus deformations have a strong effect on the distant seg-
ments. At a finer scale, the deformations have a more local character.

2.2 Affine-Invariant Attribute Vector on Each Model Point

In order to capture the geometry of anatomical structures in a hierarchical fashion, we
introduced the concept of an attribute vector that is attached to each point of the pros-
tate surface model and reflects the geometric structure of the model from a global
scale to a local scale. The attribute vectors are an important aspect of AFDM, since
they provide a means for finding correspondences across individuals by examining the
similarity of the underlying attribute vectors. In 3D case, each attribute is defined as
the volume of a tetrahedron (see Fig. 2), formed by a model point ¥, and any three

points in its certain neighborhood layer. For each model point y,, the volumes that are

calculated from different neighborhood layers of its surface segment can be stacked
into an attribute vector F(¥,), which can be made affine-invariant as £ (y,) by nor-

malizing it over the whole model [6,7].

2.3 Energy Definition of Prostate Surface Model

Our deformable model is very robust to local minima, since the local energy term E,
[7], that is composed of two terms g™ and E®“, is defined on the surface segment
of the model point y,, rather than a single model point y,. The model energy term
EM™* is defined to allow AFDM determine correspondences, in addition to segment-
ing structures of interest. In particular, the model energy term g™ is defined as the
difference between the attribute vectors of the model and its deformed configuration,
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and it is given by gm :HﬁDef W)—EM @), where £ (v,) and FM(,) are re-

spectively the normalized attribute vectors of the deformed model configuration and
the model at the point 7,. As to the data energy term, £, it is designed to move the

deformable model towards an object boundary. Since our deformation mechanism
deforms a surface segment around each model point y, at a time, we design a data

energy term E™* that reflects the fit of the whole surface segment, rather than a single
model point, with image edges.

2.4 Adaptive-Focus Deformation Strategy

In our previous work we have determined that model adaptivity is very important for
robust segmentation and correspondence estimation. Adaptivity was embedded in
AFDM by employing an external force mechanism in a hierarchical way, starting with
relatively easier to find structures and gradually shifting focus to other structures, as
the model deforms into a configuration closer to the shape of an individual structure.
We explore the utility of adaptive modeling further in the registration of prostate sam-
ples (see Fig. 3). Two types of prior knowledge about the prostate shapes are avail-
able. First, the attribute vectors of the model points along the two open surface
boundaries of the prostate shape model are very distinct, compared to other attribute
vectors of other model points, such as in the middle cross-section of the prostate
model. With this prior knowledge, we will focus on the two open surface boundaries
in the initial deformation stages, which will lead to a rough match between the prostate
model and the subject. Second, the prostate capsule is more accurately and reliably
outlined in the histopathological samples, compared to the urethra that does not in-
clude soft tissue and therefore is very deformed in the specimens. This prior knowl-
edge suggests us to focus on the prostate capsule first, and then shift focus to the ure-
thra, as more information about the urethral shape is gathered from the subject.

«—momn surface boundary

pen surface boundary

Fig. 3. The procedure of warping a prostate subject to the template. (a) Side view of the tem-
plate given in Fig. 1, (b) Side view of the subject that is the same as the one in Fig. 4(bl).

3 Optimal Needle Biopsy Strategy

After warping all prostate subjects into the space of the template by AFDM, we con-
struct the 3D statistical atlas of spatial distribution of prostate cancer, and we further
design optimal needle biopsy strategies for diagnosing prostate cancer in a patient. In
the next, we describe an algorithm to design optimal K-biopsy (biopsy with a number
K of needles) strategy by minimizing the probability of missing the cancer.
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3.1 Optimization
A K-biopsy strategy can be optimized by minimizing the probability that none of the K
needles detects cancer. This probability is defined by

P(B(x,)=NC,i=1,.K) (D
where B(x,) is the biopsy outcome at location x,, and NC denotes a negative cancer
detection result. Location x, can be anywhere inside of a 3D prostate template. We
can find the configuration that minimizes this probability by using standard optimiza-
tion methods. Since the probability in (1) is likely to have many local minima, we use
the simulated annealing technique to find globally optimal values for x, ...x,. We
start with an initial guess for the coordinates of the K needles, and then we iteratively
change these values toward a direction that decreases the probability function in (1).
Initially, changes in the direction that increases the probability in (1) are allowed, but
these steps are progressively discouraged more and more as the algorithm proceeds, as
customary in random optimization methods.

3.2 A Fast Heuristic Method

The search space in our optimization problem is very large, since each of the K needle
coordinates can be any voxel within the prostate template. Therefore, in order to make
the simulated annealing technique practical, we need to find a good initial guess to be
used as a starting point for this algorithm. In the following, we describe a very fast
heuristic method.

The probability of missing the cancer can be expressed as a product of conditional
probabilities,

P(B(x,)=NC, i=1,..,K) = P(B(x,)=NC )e P(B(x,)=NC | B(x,)=NC )e
---oP(B(x,; )=NC | B(x,)=NC, i=1,...K-1)- (2)

Our heuristic method sequentially minimizes a series of the conditional probabilities
of missing cancer, each of them being one of the terms in (2). Suppose that there are N
different locations in the prostate template, and M prostate samples in the training set.
To minimize (2), one of K biopsies, let’s say the first biopsy B(x,), will be taken from
the location x, where the likelihood of cancer is the highest, that is, the first term in
(2), P(B(x,)=NC), is the lowest. Knowing the location of the first biopsy x,, in order
to calculate the conditional probability P(B(x,)=NC | B(x,)=NC ), we remove those
prostate samples that have cancer at location x,, since those do not satisfy the condi-
tion B(x,)=NC, and recalculate the probability at each location. It is important to note
that if the incidence of cancer at a location other than x, is strongly related with the
incidence of cancer at location x,, then the cancer occurrence probability of this loca-
tion will become very low in the conditional probability P(B(x,)=NC | B(x,)=NC ).
This is because all subjects with cancer at x; have been excluded in calculating the
conditional probability P(B(x,)=NC | B(x,)=NC ). This implies that the second biopsy
will most likely not be placed at the cancer locations strongly related with the location
x,. With this new conditional probability, the biopsy location x, can be determined
by selecting the location where the likelihood of cancer is highest, i.e. the conditional
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probability P(B(x,)=NC | B(x,)=NC ) is lowest. Using the same procedure, the loca-

tions of other biopsy sites can be similarly determined. Effectively, this procedure
minimizes each of the terms in (2) sequentially, rather than operating at the full joint
distribution, and is therefore extremely fast.

3.3 Increasing Robustness of Qur Biopsy Strategy

In order to make our biopsy strategy robust to the errors from needle placement, each
cancer probability (or conditional cancer probability) function is spatially smoothed
prior to finding optimal needle locations. This is specifically designed to avoid the
cases that optimal needle locations are determined to be on isolated, high-probability
regions, since those regions might be difficult to accurately sample in practice due to
unavoidable errors in placing needles. With this formulation, our biopsy strategy is
robust, since we guarantee that the optimal needle locations be on the regions with
both high cancer probability and relatively wider spatial extent. Therefore, even a
needle is wrongly placed in the neighborhood around the expected location, we still
have very higher probability in detecting cancer.

4 Experiments

Two groups of experiments are performed in this section, in order to 1) test the per-
formance of our deformable registration, 2) validate the predictive power of our atlas-
based optimal biopsy strategies in detecting prostate cancer. These two experiments
were performed on 64 of the 281 prostate subjects in our database.

4.1 Performance on AFDM-Based Deformable Registration

Fig. 4 demonstrates a procedure of registering and warping a representative prostate
subject (Fig. 4(b1)) to the space of the prostate template (Fig. 4(al)). In both of Figs.
4(al) and 4(b1), the orange surfaces denote the prostate capsule, and the yellow sur-
faces denote the urethra. The red region in the subject denotes the positions of cancer.
The side views of the template and the subject are shown in Fig. 3. The spatially nor-
malized version of the subject is shown in Fig. 4(cl), where the white mesh corre-
sponds to the capsule of the template and the red mesh corresponds to the capsule of
the subject. Fig. 4(a2) shows a typical cross-sectional image of the template prostate.
The corresponding cross-sectional image of the subject’s prostate is shown in Fig.
4(b2). Notable are the shape differences between these two cross-sections. After using
the warping algorithm, we obtain the warped image of Fig. 4(c2), whose shape is very
similar to that of the template prostate in Fig. 4(a2).

We also measured the registration accuracy of AFDM. We did this by measuring
the percent overlap and average distance between the prostate structures in the 64
images and their counterparts in the prostate template, after all prostate subjects had
spatially normalized to the template. Note that these images are all labeled, and there-
fore overlap of the various prostate structures across subjects can be readily com-
puted. For 64 prostate samples, their percent overlap measures ranged from 96.4% to
98.4%, with the mean overlap 97.7%. Their average boundary distances ranged from
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1.7 to 3.0 pixels, which is very small compared to the prostate image with the size of
256x256x124 pixels.

4.2 Testing Predictability of the Statistical Atlas

Using the registration and warping algorithm, we can eliminate the overall shape dif-
ferences across individuals. In this way, we can find the spatial distribution of cancer
within the space of the prostate template, which can be used to determine the needle
biopsy strategy. We tested the heuristic sequential optimization procedure on 64 sub-
jects (M=64). All N=256x256x124 voxels were considered to be candidate biopsy
locations. In Fig. 5(a), the optimal biopsy sites are shown as small red/yellow spheres
and the underlying spatial statistical distribution of cancer is shown as green. Brighter
green indicates higher likelihood for finding cancer in that location. The viewing angle
of the statistical distribution is similar in both of Figs. 5(a) and 5(b), to facilitate com-
parison. In Fig. 5(b), the prostate capsule is shown as red. A typical cross-section of
the 3D cancer distribution is also shown in Fig. 5(d). Six needles were adequate to
detect the tumor 100%, in those 64 subjects. The locations of 6 needles with depth
information are shown in Fig. 5(c). Of course, this will likely not be the case as we
increase the number of subjects. But, an important implication is that optimized needle
placement is not necessarily on regions that have high likelihood of cancer. As we can
see from Fig. 5(a), only first three yellow needles were placed in brighter green (high
likelihood) regions. The rest three were placed in regions that were almost statistically
independent from the first three.

We validated the predictive power of our statistical atlas using the leave-one-out
method. For each time, we selected one subject from our 64 prostate samples, and we
regenerated the statistical atlas by leaving this subject out. We then determined again
the optimal biopsy sites, and we applied them to this left-out subject. This way, we
measured the probability of missing the cancer. For 6-biopsy strategy, the leave-one-
out method showed that the rate of success was 96.9%.

In Fig. 6, we also provide the rates of success, as a function of the number of the
needles (K) and the volume of tissue that the needle actually extracts from the patient.
Suppose that the volume extracted by a needle is V. In the reality there are errors in
placing a needle, or in determining angle. Accordingly, we assume that the needle will
actually extract only a part of the tissue thought to be extracted under ideal conditions
in the optimized K-biopsy. If each needle actually extracts 60%~100% of V" around its
optimized location, then identical curves of success rates are obtained, as shown as the
curve with ‘0’. 6 needles are adequate to detect the tumor 100%, while five needles
can detect the tumor in 63 out of 64 cases. For other percentages of actual vs. theoreti-
cal volume extraction, i.e. 50%, 30%, 10%, the rates of success with the number of the
needles are shown as curves with ‘e¢’°, ‘A’, ‘B’. For all these cases, 7 or 8 needles are
adequate to detect the tumor 100%. This numerical figure of success rate is very valu-
able for clinicians using our method, since they will be able to quantitatively evaluate
the trade-off between success rate and patient discomfort.
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(a2) (b2) (c2)

Fig. 4. Results of the deformable registration technique in registering prostates. (al) A prostate
template to which all subjects are warped, (bl) a selected subject, (c1) overlay of the prostate
boundary of the subject of bl (red) after deformable registration with the template prostate
(white). Figs. (a2-c2) are representative cross-sectional images corresponding to (al-cl).

Fig. 5. Optimal biopsy strategy using statistical atlas of cancer distribution. The 6 biopsy posi-
tions are shown as small color spheres in (a,c), with the statistical atlas of cancer shown as
green in (a,b,d). Prostate capsule is shown as red in (b) for comparison. The cross-sectional
image of the statistical atlas of cancer is shown in (d), where prostate capsule is shown as
white.
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Fig. 6. The rates of success changing with the number of needles K and the percentages of
volume of tissue that the needle actually extracts from the expected neighbor of the optimized
needle location.

5 Summary and Conclusion

We have presented a methodology to create a statistical atlas for designing optimal
needle biopsy strategies. We have applied this method on 64 subjects. We will finally
test this method on the whole database of 281 prostate subjects. We will also study the
method of warping the statistical atlas to the ultrasound images of the patients’ pros-
tate, for image-guided biopsy and therapy.
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