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registration of the prostate images of a large number of patients, a statistical atlas of
cancer distribution can be created and further applied in suggesting optimal biopsy
strategies. As to the statistical analysis, we not only look at the probability of devel-
oping cancer at individual locations, but also develop a full statistical predictive model
that takes into account the spatial correlation of cancer incidence between different
prostate regions. Our rationale is that regions between which cancer incidence is very
highly correlated need not be sampled simultaneously, as opposed to regions between
which cancer occurrence is relatively independent. These models are used in an opti-
mization framework for estimation of optimal needle biopsy strategies.

This paper is organized as follows. In Section 2, we build a methodology for de-
formable registration and normalization of prostate samples. In Section 3, we create a
statistical atlas of the spatial distribution of prostate cancer and develop a probabilistic
method for designing optimal biopsy strategies that best predict the presence of pros-
tate cancer in a particular patient. In Section 4, we demonstrate the performance of
AFDM in registering prostate samples, and validate the predictive power of our atlas-
based optimal biopsy strategies in detecting clinically significant cancer in our exist-
ing prostate database.

2   Spatial Registration and Normalization of Prostate Samples

The major problem in developing a spatial normalization method is determining cor-
respondences. We have developed a deformable shape modeling framework, for seg-
mentation and reconstruction of anatomical shapes, and for determining morphology-
based correspondence across individuals, from tomographic images [6,7]. This
framework is based on our AFDM. In AFDM, for a given set of structures, a shape
model is first constructed to represent a typical shape of these structures. This shape
model includes two kinds of information: information about the geometry of the
structures and information about the statistical variation of these structures within a
given population. In the application stage, the deformable shape model is placed in an
image with the structures of interest, and is subsequently let free to deform according
to features extracted from the images, seeking objects that have similar geometry, but
also objects that fall within the expected range of shape variation.

In this section, we use AFDM as a registration method to spatially normalize the
external and internal structures of the prostate samples, such as the capsule and the
urethra. In particular, we select one typical prostate as the template (Fig. 1a), and
other subjects are warped into the space of this template. The warping is performed in
two stages. First, AFDM is used to reconstruct the shape of each structure and to de-
termine point correspondences between the subjects and the template. Second, these
point correspondences are interpolated elsewhere in the space of the prostate by using
an elastic warping technique [8]. Since AFDM is the cornerstone of our deformable
registration method, it is particularly redesigned for prostate application next.
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Fig. 1. A prostate surface model. (a) 3D display, and
(b) a cross-section.
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Fig. 2. Attributes defined as volumes of
tetrahedra in 3D.

2.1  Spatial Connections between Distant Structures of the Prostate Surface
Model
AFDM comprises several inter-connected surfaces, each representing the anatomy of a
structure of interest. Fig. 1a shows a 3D prostate model with two surfaces that repre-
sent the capsule and the urethral boundaries. In order to allow a deformation imposed
on a segment of one surface (such as the capsule) to rapidly propagate to the segments
of the other surface (such as the urethra) in a hierarchical fashion, connections be-
tween these two surfaces are added (gray arrows in Fig. 1b), effectively rendering
distant surface patches as neighbors. Therefore, at a coarse scale, large segments are
connected together, and thus deformations have a strong effect on the distant seg-
ments. At a finer scale, the deformations have a more local character.

2.2  Affine-Invariant Attribute Vector on Each Model Point
In order to capture the geometry of anatomical structures in a hierarchical fashion, we
introduced the concept of an attribute vector that is attached to each point of the pros-
tate surface model and reflects the geometric structure of the model from a global
scale to a local scale. The attribute vectors are an important aspect of AFDM, since
they provide a means for finding correspondences across individuals by examining the
similarity of the underlying attribute vectors. In 3D case, each attribute is defined as
the volume of a tetrahedron (see Fig. 2), formed by a model point iV  and any three
points in its certain neighborhood layer. For each model point iV , the volumes that are
calculated from different neighborhood layers of its surface segment can be stacked
into an attribute vector )( iVF , which can be made affine-invariant as )(�

iVF  by nor-
malizing it over the whole model [6,7].

2.3  Energy Definition of Prostate Surface Model
Our deformable model is very robust to local minima, since the local energy term iE
[7], that is composed of two terms model

iE  and data
iE , is defined on the surface segment

of the model point iV , rather than a single model point iV . The model energy term
model
iE  is defined to allow AFDM determine correspondences, in addition to segment-

ing structures of interest. In particular, the model energy term model
iE  is defined as the

difference between the attribute vectors of the model and its deformed configuration,
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(a1)                                     (b1)                                    (c1)

  
(a2)                                     (b2)                                    (c2)

Fig. 4. Results of the deformable registration technique in registering prostates. (a1) A prostate
template to which all subjects are warped, (b1) a selected subject, (c1) overlay of the prostate
boundary of the subject of b1 (red) after deformable registration with the template prostate
(white). Figs. (a2-c2) are representative cross-sectional images corresponding to (a1-c1).
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Fig. 5. Optimal biopsy strategy using statistical atlas of cancer distribution. The 6 biopsy posi-
tions are shown as small color spheres in (a,c), with the statistical atlas of cancer shown as
green in (a,b,d). Prostate capsule is shown as red in (b) for comparison. The cross-sectional
image of the statistical atlas of cancer is shown in (d), where prostate capsule is shown as
white.
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Fig. 6. The rates of success changing with the number of needles K and the percentages of
volume of tissue that the needle actually extracts from the expected neighbor of the optimized
needle location.

5   Summary and Conclusion
We have presented a methodology to create a statistical atlas for designing optimal
needle biopsy strategies. We have applied this method on 64 subjects. We will finally
test this method on the whole database of 281 prostate subjects. We will also study the
method of warping the statistical atlas to the ultrasound images of the patients� pros-
tate, for image-guided biopsy and therapy.
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