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Abstract. We present a method to optimize Gamma Knife™ (Elekta,
Stockholm, Sweden) radiosurgery treatment planning. A Guided Evolutionary
Simulated Annealing optimization algorithm is used to maximize the
therapeutic benefit through a probability model that dissects a patient volume
image into three components: normal, critical normal, and tumor tissue. This
evolutionary optimization algorithm may be seeded randomly or via an
automatically detected medial axis. We use indices of dose conformality, level,
and homogeneity to evaluate the degree to which a treatment plan has been
optimized. Two clinical examples compare the GESA algorithm with current
manual methods. GESA optimization shows therapeutic advantage over the
treatment team’s manual effort. We find that computation of treatment plans
with more than 8 shots require initial medial axis seeding (i.e., shot: number,
size, and position) to complete within 8 hours on our workstation.

1 Introduction

The Leksell Gamma Knife™ (LGK) is a tool for providing highly accurate
stereotactic radiosurgical treatment of brain tumors. It conforms radiation beams to a
lesion from 201 ®’Co sources through four different size collimators. Typically, a
neurosurgeon, a radiation oncologist, and a medical physicist collaborate to form a
unique treatment plan for each patient. Each application of radiation, a “shot,” has an
ellipsoid shape dose distribution that varies with the location of the isocenter.
Typically, more than one shot is usually required to irradiate the tumor. The clinicians
provide each shot in the plan to the stationary patient as a separate procedure.
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The tumor portion, and perhaps nearby critical structures, are most often
segmented (labeled) in a series of 2D MRI images. The planning team prescribes a
radiation dose (D4, usually 50% of D) based in large part on tumor type and
volume. Now the number of shots, shot size (only four radiation collimators are
available, with diameters of 4mm, 8mm, 14mm, or 18mm respectively), shot weight
(irradiation level), and shot position are determined.

Treatment parameters which a computer is better suited to optimize than the
treatment team are best handled through inverse-planning. These tasks include
determining the location of shots which best conform to, and provide homogeneous
irradiation to, the lesion at a prescribed level. Highly conformal plans also contribute
to minimization of normal tissue damage. The shot positioning problem can be
viewed as a combinatorial packing problem; a search for a group of roughly 3D
Gaussian functions (shots) that conform to the 3D tumor shape under the constraint
of minimized spread out to the adjacent volume. However, the limited number of
LGK shot sizes and weights (dose level) require complex compromise between the
goal of irradiating tumor and sparing normal tissue. The physician specifies where
critical structures next to the tumor demand a rapid dose drop-off (steep gradient).

When multiple shots are applied in the treatment plan, the dose is normalized to the
maximum dose in the Volume of Interest (VOI). For a treatment plan that includes N
shots, each with weight w,, size r, iscocenter (i,j,k), the dose delivered to the voxel A
in the VOI, can be written as:

NS‘
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where Dy is the prescribed maximum dose by the treatment planning team, and
Dsa(W,1,j,k,r) is dose contributed to point A via shot s. The goal is to maximize tumor
are covered with greater than 50% of Dy, and minimize the normal tissue damage
by delivering less than 50% of D, there, much less to adjacent critical structures.

Elekta’s LGK treatment planning software, GammaPlan™, asks the treatment
planning team to manually choose shot size, weight, and position based on the
patient’s 2D MR-scan series. The team re-computes the cumulative dose and dose
distribution as each new shot is added to the treatment plan, until a sufficient dose
acceptably conforms to the lesion. In our experience this iterative procedure ranges
from 45 minutes to over 5 hours.

1.1 Automated Radiosurgery Planning

Several other groups have presented inverse planning of LGK treatment variables.
Shu et. al.! present a solution the shot packing problem that uses multiplier penalty
methods. Gibon et al.? solve the same LGK shot positioning problem with a conjugate
gradient and simulated annealing approach. Wu et al.” and Wagner et al.* treat LINAC
radiosurgery planning as a “shot packing” problem using a depth map similar to our
medial axis seeding algorithm. Leichtman et al.” use an adaptive simulated annealing
method to refine an initial plan generated automatically by computer or manually by
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the physician. Our Guided Evolutionary Simulated Annealing (GESA) algorithm®
hybridizes the evolutionary nature of genetic algorithms with parallel computing (i.e.,
parallel processing of competing treatment plans), and objective function optimization
procedures. The optimized objective function represents a biological model of all
treatment criteria. This algorithm discovers a near-optimal solution after examining a
small fraction of the possible solutions.’

2 Treatment Criteria Model

Our mathematical model simulates all treatment criteria. For each ijkth voxel in a VOI
identified by the surgeon. The therapeutic benefit is modeled by probability Pﬂjk:
Ky xAd
e

P = (2)

ijk eK,/kxAd,/k 4 e—K,/A,xAd,/k

where Adiy=(Djj-Dpp)/Dpp, Dijx is the dose delivered to the ijk‘h voxel; Dy is assigned
as 50% of Dymax; and Kjj is a scale factor (imposing the importance of fitting the
desired dose to the voxel). Our goal is to maximize therapeutic benefit (i.e., tumor
destruction and normal tissue sparing). For a voxel classified as tumor, the associated
Kijx is positive. Dose that is between the prescribed and maximum levels results in a
large Pﬂjk. For a voxel classified as normal tissue, the associated K;j is negative.
Normal tissue dose below the prescribed minimum tumor level results in a beneficial
(large) P'ji. For a voxel classified as critical structure, the associated Kjj is yet more
negative than other normal tissue; the corresponding D,q would be assigned an even
lower value (i.e., 30% of Dpn,y) relative to the prescribed tumor dose. Therefore, a
large dose (compared to its own D,4) delivered to critical structure voxels will result
in a very small P+ijk value, counter to our goal of maximizing P+ijk. The choice of each
Kij., especially the ratio different tissue type Kjj ‘s, determines the compromise
between irradiating the entire tumor and sparing adjacent normal tissue.

3 Objective Function

An objective function is used to achieve the goal of optimizing the initial plan to
match the clinician-specified treatment criteria. As noted, the goal of our objective
function is to maximize the plan’s therapeutic benefit, modeled as a probability, P,
at each voxel. The objective function to be minimized (i.e., annealed) is written as:
E=-L23 ;) )
N ijk

where N is the number of voxels in the VOI. Maximizing Pﬂik also works towards
another planning goal, homogeneous dose distribution (i.e., no hot or cold spots).
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where X, is the child, x,
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temperature parameter,
and p is random
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There are two levels
ositiol weight size .. .
Q @ > contfol of competition in our
GESA algorithm. First,
Fig. 1. GESA Evolutionary Procedure. See text for explanation. ~ within a family, children
compete  with their
parents for a position as a parent in the next generation. The objective function value
of the best child in the family is ys., y, is the objective function value of the parent, T,
is a temperature parameter, and p is a random number. The best child in the family is
qualified to replace its parent if it satisfies:

=y, )T
ybc <yp or e()’b( yp) 1 >p (5)
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Second, there is also competition among families. We evaluate the quality of each
family. There are different criteria for inter-family competition.

There are three temperature parameters for the optimization procedure, T, T,, and
T;. Between successive generations, the temperature decreases linearly:

T'(n)=T0)-n(T(N)=T(0))/N  (6)
where T(0) is the initial temperature, N is the designed maximum generations, and
T(N) is the final temperature.

4 Seeding the GESA Radiosurgery Treatment Planning Algorithm

Since the discrete shot number and size are not fixed during the optimization process,
there is evolutionary mutation of these parameters in the GESA procedure. Evolution
requires variation, therefore we seed GESA with multiple species (i.e., initial
treatment plans with different shot number and size) and let them compete for
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survival. For different levels of tumor complexity (i.e., size and geometry), the
optimization task utilizes different GESA strategies. For a small tumor with regular
shape (i.e., requiring less than 8 shots to cover the tumor), the GESA algorithm begins
with a randomly determined initial plan with a maximum number of shots of uniform
size by the treatment planning team. From this starting point the treatment plan adapts
an evolutionary strategy that is able to mutate the shot number and size. For a big
tumor with irregular shape, multiple initial treatment plans with different number of
shot and shot size are generated via our medial axis guided algorithm.® These plans
evolve and compete as potentially optimal plans within the GESA analysis.

4.1 Medial Axis GESA Seeding

Medial axis detection is an image processing technique that is used to model the
geometrical shape of an object of interest. The medial axis is a line representation of
an object where all points are equidistant from at least two points along the object’s
border. One means of detecting the depth of voxels from the surface of the segmented
tumor is the Grassfire Based Euclidean Distance Transform. A Euclid Distance
Transform (EDT) of a binary image can be simulated as the propagation of the grass
fire wave front. The fire is ignited all about the object’s periphery and is extinguished
at the innermost area where convergent fires create the highest local heat value. A
sequential algorithm, based on Danielsson’s work™® efficiently produces the EDT.
First, distance values are assigned to the boundary points (i.e., at least one of the 8-
connected neighbors is a member of non-object), the fire source of the binary image
object. These values are assigned by:
EDM (p)=min[L(p,p' )+ EDM(p')] Vp'e NNnS' (2)

where O is the object, O’ is the non-object, pe O, pe O’, N is the point set of §-
connected neighbors of p, L is the real distance between p and p'. Next, the binary
object is peeled away, one layer at a time. Old boundary points become members of a
non-object, and new boundary points are exposed. For each set of new boundary
points p, the distance values are also calculated by Eq. 2. This calculation continues
until it reaches the final layer of the object. The accuracy of grass fire-based EDT is
improved by using a floating value instead of an integer value. The result better
approximates a binary segmented object in digitized space.

Medial axis points may be detected as ridge points on an EDM surface via our
Gradient Phase Operator.® We define the phase gradient of a point on a 3D EDM
surface:

G(S,r,@)=(EDM(S)— EDM(P))/AL  (3)
where S is a point of the object, P is a point on a circle centered at S with radius of r,

¢ is the angle between line SP and the vertical direction, and AL is the real distance
between S and P. The medial axis is an optimal location for LGK shot centroids.

4.2 GESA Optimization

Whether randomly or medial axis-generated, once seeded with 20 initial treatment
plan families, the evolution process toward an optimal plan occurs automatically.
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Given the shape and volume of the tumor, the treatment planning team determines
maximum shot number, initially uniform shot size. Then shot weight (w) and position
(posJ[i,j,k]) are chosen randomly in the 20 initial plan domains, where we[0.2,1.5],
and pose {tumor voxel}. For each family, twenty children are reproduced, each
slightly mutated from its parent (Equation 4). Note that the reproduction the size of
each shot can also mutate. If the weight of the shot falls under 0.2, the shot size will
change to the next smaller available size. Shot weight is assigned:

size

w

mutated — Weurrent
mutated

A 4mm shot with weight below 0.2 would be removed from the treatment plan to
reduce redundancy, thus change the total number of shots in the treatment plan. The
initialized families are sent to GESA. After evaluating the fitness of each child
(Equation 3) in each family, the best child competes with its parent for the parent
position of the next generation based on Equation 5. Competition at the inter-family
level results in replacement of parents of the worst performing family by that with the
best treatment plan. This ensures that a family with the highest quality gets more
chances to reproduce. This evolutionary procedure continues until the parents of each
family change little (i.e., an objective function reaches an acceptable value).

Plan Tumor  Normal Tiss.  Shot # Tumor Tumor Planning
Origin Tiss. Vol. (Critical Dose Dose Time
Vol. Structure) Avg Std. Dev
CASE 1: Acoustic Tumor
Manual  6.69 cm’ 2.01 8 0.62Dpmax 0.09 45 min
GESA 6.77 cm® 1.32 7 0.65Dpmax 0.08 1 hour
CASE 2: Meningioma Tumor
Manual 540 cm® 4.77 (0.03) 19 0.60Dpmax 0.10 5.5 hrs
GESA 5.47 cm’ 3.16 (0.02) 15 0.62Dpmax 0.11 7.5 hrs

Table 1. Manual Plan and Optimized Plans for Cases 1 and 2.

5 Brain Tumor Treatment Planning Experiment

Our goal is to obtain an optimal treatment plan via GESA in less than one work day’s
(8 hours) computation time. We present two of the cases that test the effectiveness of
our GESA treatment planning algorithm, especially where initial seeding is helpful.
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Figure 2. Comparison of Acoustic Tumor treatment plan (Columns A and B) and Meningioma
Tumor treatment plan (Columns C and D) generated by GESA algorithm (Columns A and C)
and that manually generated by a treatment planning team (Columns B and D). Views: Sagittal
(Row 1), Coronal (Row 2), Axial (Row 3). The original tumor surface is opaque yellow. The
surface of the volume receiving than 50% of Dy, is assigned transparent blue.

5.1 Case 1: A Small Acoustic Tumor with Simple Shape

After determining the tumor volume, the attending treatment planning team set the
initial shot number at 8 utilizing uniform shot size of 14 mm, and uniform shot weight
of 0.8. The GESA began its search for a treatment plan with random shot location
(i.e., no seeding). After 38 generations, a 7-shot treatment plan was generated (Table
1). The GESA treatment plan improved conformality (Figure 2) as evidenced by
0.08cm’ more tumor irradiation, and 0.69cm’® more normal tissue spared. The GESA
optimized plan required 1 less shot and resulted in a higher tumor dose average which
was closer to the desired dose (0.8), and a lower tumor dose standard deviation
between voxels (i.e.,. homogeneity). over the manual shot packing plan (Figure 1). It
took 1 hour to process the 38 GESA generations involved on a Silicon Graphics Inc.
(Mountain View, CA) ORIGIN 200™ SGI workstation with an R10000, 250MHz
CPU. This unsupervised computation may be compared to the treatment planning
team’s 45 minutes spent manually generating the plan that the patient received.

5.2 Case 2: A Large Meningioma Tumor with Complex Shape

To initiate the GESA algorithm, the tumor’s medial axis was located for a segmented
meningioma tumor. Seven treatment plans with various shot number and shot size
were based on the medial axis and provided as seeds to the GESA algorithm. Each of
these seeds resulted in six families, each with twenty children. After 58 generations,
the species with 15 shots that includes three 14mm-shots, nine 8mm-shots and three
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4mm-shots won the competition. The randomized initial seeding required 214
generations (days) for GESA to reach an acceptable treatment plan. Table 1 shows the
comparison between the plan generated by GESA and that generated by the planning
team. GESA algorithm achieved better conformality and similar homogeneity. It took
7.5 hours to process the 58 GESA generations on the same SGI ORIGIN 200™. This
unsupervised computation should be compared to the treatment planning team’s
requirement of 5.5 hours to manually generate their plan. Movies of the treatment
plans seen in Figure 2 may be found at http://neurosurgery.cwru.edu/imaging.

6 Discussion and Conclusion

The 3D GESA algorithm searches the shot parameter space more thoroughly than is
possible during manual shot packing. We note that, where beneficial to the patient, a
reduction of shot number reduces treatment time. Also, as tumor shape becomes
larger and/or more irregular the optimization search space of shot position, size, and
weight expands exponentially. Medial axis seeding reduces that space by providing
several good initial shot packing plans.
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