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Abstract. This paper describes a general method for segmenting articulated
structures. The method is based on statistical parametrical models, obtained by
principal component analysis (PCA). The models, which describe shape,
appearance, and topology of anatomic structures, are incorporated in a two-
level hierarchical scheme. Shape and appearance models, describing plausible
variations of shapes and appearances of individual structures, form the lower
level, while the topological model, describing plausible topological variations
of the articulated structure, forms the upper level. This novel scheme is actually
a hierarchical PCA as the topological model is generated by the PCA of the
parameters obtained at the lower level. In the segmentation process, we seek the
configuration of the model instances that best matches the given image. For this
purpose we introduce coarse and fine matching strategies for minimizing an
energy function, which is a sum of a match measure and deformation energies
of topology, shape, and appearance. The proposed method was evaluated on 36
X-ray images of cervical vertebrae by a leave-one-out test. The results show
that the method well describes the anatomical variations of the cervical
vertebrae, which confirms the feasibility of the proposed modeling and
segmentation strategies.

1 Introduction

Ascertaining the detailed shape and organization of anatomic structures is important
not only within diagnostic settings but also for tracking the process of disease,
surgical planning, simulation, and intraoperative navigation. Accurate and efficient
automated segmentation of articulated structures is difficult because of their
complexity and inter-patient variability. Furthermore, the position of the patient
during image acquisition, the imaging device itself, and the imaging protocol induce
additional variations in shape and appearance. To deal with the variations, a
segmentation method should use as much available prior information on shape,
location, and appearance of the analyzed structures as possible. When segmenting
articulated structures, like the spine, knee, or hand, prior knowledge on topology, i.e.
organization of anatomical structures, should also be considered.

In recent years, a great variety of shape and appearance models have been
proposed as a source of prior knowledge and applied to various tasks in medical
image analysis [1]. Efficient models should be general to deal with inter-patient
variability and yet specific to maintain certain anatomical properties [1, 2]. Models,
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which are trained on a set of labeled training images meet these requirements and
have therefore received much attention. For example, point distribution models, active
shape models, and active appearance models, all proposed by Cootes et al. [3, 4],
were successfully applied to bony structures, e.g., vertebrae [5], spine [6], knee joint
[4], hand [7], rib cage [8] or hip and pelvis [9], most often for segmentation purposes.

Articulated structures exhibit two kinds of shape variations, i.e. variations in
shapes of individual parts and variations in spatial relationships between the parts.
Such combined variations cannot be optimally described by a single linear model
unless variations of spatial relationships are sufficiently small and a sufficiently large
training set is used [6]. Therefore, alternative approaches are required to describe the
non-linear shape variations. This can be assessed by a piecewise linear models [10] or
by separately modeling the variations of spatial relationships and variations of shapes
of individual parts [7]. The problem with piecewise linearization is that it can only
approximate the non-linear shape variations without using prior knowledge on
organization of articulated structures, while in [7] the prior knowledge is used only
for model initialization and not throughout the matching process.

In this paper we propose a general statistical hierarchical modeling of shape,
appearance, and topology of articulated structures, which efficiently deals with non-
linear shape wvariations and incorporates prior knowledge on organization of
articulated structures. The hierarchical scheme is comprised of two levels. Shape and
appearance models, which describe individual structures form the lower level, while
the topological model, which describes the organization of anatomical structures,
forms the upper level and supervises spatial relations between individual models at
the lower level. The proposed method is applied to the segmentation of cervical spine
vertebrae.

2  Hierarchical Scheme

To build up a general scheme that can describe the shape and appearance variations of
anatomical structures, such as vertebrae, and the topological variations of the
articulated structures, e.g. the cervical spine, we use the principal component analysis
(PCA), which is a well-known statistical tool [11]. By PCA the principal variations of
average shape, appearance, and topology can be derived from a set of representative
training images.

2.1 Principal Component Analysis

Principal component analysis (PCA) is based on the statistical representation of a
random variable [11]. Suppose we have a random vector population x and the mean of
that population is denoted by X; X=E(x). The covariance matrix of the same data set
is C:

C=E(x-X)(x-X)7) . )]
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From a symmetric matrix such as C we can define an orthogonal basis by finding
its eigenvalues and eigenvectors. By ordering the eigenvectors e; in the order of
descending eigenvalues A, > A, one can create an ordered orthogonal basis with
the first eigenvector having the direction of largest variance of the data. Data may be
reconstructed by a linear combination of orthogonal basis vectors. Instead of using all
the eigenvectors of the covariance matrix, we may represent the data in terms of only
a few basis vectors of the orthogonal basis. Let ¢ largest eigenvalues and
corresponding eigenvectors be retained to form the matrix ®; ®=(@ | @,|...| Q).

Knowing X and matrix @ , we can reconstruct the input data vector x:
X=X+®y , (2)

from the parameters y of the statistical model. If the data is concentrated in a linear
subspace, this provides a way to compress data without losing much information and
simplifies the representation. Alternatively, the input data vector x can be transformed
into vector y:

y=®7(x-X) . 3)

By the above statistical model we can describe shape, appearance, and topology of
an articulated structure as shown below.

2.2 Shape

Each structure is described by a statistical shape model as proposed by Cootes et al.
[3]. The model is derived from a set of training shapes. Each training shape is
composed of anatomical points defined in training images. Prior to defining the mean
shape of a structure, the training shapes are rigidly aligned [3]. Shape variations are
found by the PCA of training sets of anatomical points and represented by the most
significant eigenshapes.

2.3 Appearance

The appearance, i.e., the texture of each structure is modeled on shape-free training
images, obtained by elastic registration of training shapes and mean shape. Thin-plate
splines interpolation between corresponding anatomical points is used for this purpose
[12]. By applying PCA to the set of shape-free training images, defined on a region of
interest covering a structure, the mean image and the most significant eigenimages are
extracted.

2.4 Topology

To describe topological variations of an articulated structure we need to correlate
variations in pose and shape of all structures. We propose to apply the PCA on pose
and shape parameters of all structures, which were obtained in the shape model
generation step. In this way, the most significant eigentopologies describe the
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anatomically plausible topological variations. This novel strategy can be viewed upon
as a hierarchical PCA. The topological PCA (upper level of hierarchy), describing
plausible topological variations of an articulated structure, is constructed from sets of
parameters generated by shape PCAs and corresponding pose parameters (lower level
of hierarchy) that describe plausible variations of shapes and poses of individual
structures. In this way, the topological PCA enables the supervision of the spatial
relations between shapes of structures, which form the articulated structure.

3 Segmentation

The above hierarchical scheme consists of parametrical models that describe shape,
appearance, and topology of an articulated structure. Once extensively trained, it
incorporates a valuable prior knowledge that can be used efficiently for describing the
image of the articulated structure. We consider model-based image segmentation by
searching the configuration L of the model instances that best match the given image
I. The best configuration L* may be found by the maximum a posteriori (MAP)
estimation:

L' =arg max P(LI|T) . 4)

Bayes rule then implies:

L' =argmax P(L)P(/ |L) . (5)

The prior P(L) is given by the probability distributions of shapes, appearances, and
topology. The likelihood function P(/|L), measures the probability of observing image
I given a particular configuration L. The standard approach to finding the MAP
estimation is to minimize the energy function F(/,L) obtained by taking the negative
logarithm of a posteriori probability:

L'= argmLin F(,L) . (6)

The required matching strategy and the energy function are given in the following
sub-sections.

3.1 Matching Strategy

Consider the configuration L describing an articulated structure composed of N
structures where each structure is described by ¢, shape, ¢, appearance, and ¢, pose
parameters. The number of all parameters is N*(t+ ¢, + t,), possibly causing a
demanding optimization problem. To overcome this problem, we can elegantly omit
the appearance parameters as they may be estimated from the image patch defined by
the shape model. This reduces the number of parameters to N*(, + t,). We name this
optimization strategy a fine matching strategy. We consider also a coarse matching
strategy by which the number of parameters can be further significantly reduced to #p
+ t7 by tuning only #p global pose and #; topological parameters of the articulated
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structure at the upper level in the hierarchy. Global pose and topological parameters
then drive pose and shape parameters of individual structures at the lower level of
hierarchy. The coarse and fine matching strategies are considered in the following.

3.1.1  Coarse Matching

In the coarse matching step, illustrated in Fig. la, we tune only global pose and
topological parameters that in turn drive pose and shape parameters of the structures.
According to these parameters, each shape model, describing a corresponding
structure, generates a shape that defines a patch on the underlying image. The patch is
then elastically transformed to the shape-free form, which is fed into the appearance
model that yields appearance parameters and approximates the given shape-free
image patch. Finally, the match measure between the shape-free image patch and its
approximation is calculated. The obtained match measure is part of the energy
function that is used for selecting the global pose and topological parameters for the
next iteration in the optimization process. The energy function, which considers also
topology, shape, and appearance deformation energies, is described latter.
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Fig. 1. Coarse matching strategy (a): global pose and topological parameters are optimized and
fine matching strategy (b): pose and shape parameters of all structures are optimized
simultaneously
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3.1.2  Fine Matching

In a fine matching strategy, illustrated in Fig. 1b, the pose and shape parameters of all
structures are optimized simultaneously, whereas the model of topology only
supervises the spatial relations between shapes of structures via the topology
deformation energy in the energy function.

3.2 Energy Function

To suppress anatomically implausible configurations we define the energy function
F(I,L) as a weighted sum of match measure M(/,L.) and topology F(L), shape Fy(L),
and appearance F (L) deformation energies:

F(,L)y=a-M{,L)+ Fr(L)+ Fs(L) + F4(L) , @)

where « is a regularization parameter weighting the match measure against
deformation energies.

The mean square of intensity differences between shape-free image patches and
their corresponding approximations was chosen as the match measure:

N
MIL)=3—5r ®
=182 Vi jeo

where r;; is the intensity difference of j-th pixel in an image patch i defined on a
region of interest €; and V; is the variance of the sum of the squares of intensity
differences [13].

The deformation energies are calculated as a weighted sum of corresponding PCA
parameters. The weights correspond to the probability density functions of PCA
parameters. In this way, a configuration L that is not anatomically plausible is
penalized.

4 Results

The proposed method was evaluated on 36 X-ray images of cervical vertebrae by a
leave-one-out test. The annotated images were taken from the NHANES II X-ray
database [14]. Vertebrae 3, 4, 5, and 6 were modeled by placing seven landmarks on
each of them. The number of shape parameters z, was set to 4 (capturing ~72% of all
shape variations), the number of appearance parameters was set to 3 (capturing ~85%
of all appearance variations), and the number of topological parameters ¢ was set to 2
(capturing ~40% of all topological variations). The regularization parameter o was
set to 100. The weighting function of PCA parameters was defined as W(y)=sign(|y-
b)*( |yi-b), so that the parameters y, had no influence on the corresponding
deformation energy if lying inside the interval [-b, b]. The values of b were 1, 0, and 1
for shape, appearance and topological parameters, respectively. The simulated
annealing global optimization method was used for energy minimization [14].

In the leave-one-out test the method was trained on 35 images and then tested on
the remaining image. The initialization of the method, which provided global pose
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parameters of the cervical spine model, was performed by selecting two points, one
on vertebra 3 and one on vertebra 6. Points were selected in centers of the vertebrae
and then perturbed by a constant distance, which was quarter of the vertebra size, in
10 different directions. After applying the method, the resulting landmark positions
were compared to the manually defined gold-standard positions by calculating root
mean square (RMS) error separately for each of the vertebrac. The RMS errors were
calculated for the initial landmark positions and after the coarse and fine matching
steps. In 80% of the cases the initial RMS error was reduced. Fig. 2 shows two
cervical spine X-ray images. In Fig. 2a the landmarks were accurately placed by the
proposed method, while in Fig. 2b the method failed because of the poor contrast on
vertebrae 3 and 4, large osteophyte on vertebra 5, and partial overlapping of vertebra
6 and shoulder. Also a well-trained human operator hardly identifies vertebrae
landmarks on such images.

The initial RMS errors and RMS errors after coarse and fine matching steps are
shown in Fig. 3. The resulting RMS errors were on the average 2.2 pixels, while the
initial RMS error ranged on the average from 5.5-7.5 pixels. The coarse matching step
succeeded to locate the landmarks to pixel accuracy, while the fine matching step

only slightly improved the localisation.
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Fig. 2. Cervical spine X-ray images on Fig. 3. Mean RMS errors and corresponding

which the method was successful (a) and standard deviations (in pixels) for initial

on which the method failed (b) landmark positions (dark gray) and after coarse
(light gray) and fine (white) matching steps

(b)

5 Conclusion

In this paper we presented a general method for segmenting articulated structures
exhibiting variations in shape, appearance and topology. The method is based on
statistical parametrical models that are incorporated in a two-level hierarchical
scheme. The lower level describes the shape and appearance of individual structures,
while the upper level controls the topology of the articulated structure. When
segmenting a given image, the anatomically plausible configuration of the models is
searched for in coarse and fine matching steps. The segmentation results on 36 X-ray
images confirmed the applicability of the proposed modeling and segmentation
strategies. We will focus our future efforts on extensive evaluation of the method on a
larger number of spine X-ray images. The proposed hierarchical statistical modeling
of shape, appearance, and topology is an important breakthrough for describing non-
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linear shape variations of articulated structures. Further development and refinement
of this methodology should remain an important area of research in the near future.
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