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Abstract. Conformal radiotherapy treatments need accurate patient
positioning in order to spare normal tissues. Patient pose can be evalu-
ated by registering portal images (PI) with Digitally Reconstructed Ra-
diographs (DRR). Several methods involve segmentation which is known
to be a difficult task for noisy PI. In this paper, we study another ap-
proach by using a fully 3D intensity-based registration method, without
segmentation. Our approach uses the correlation ratio as similarity mea-
sure and replace DRR generation with a treatment on pre-computed
DRR. A specific geometrical transformation is applied to approximate
a given projection by the composition of out-of-plane rotations and in-
plane transformation. Some preliminary experiments on both simulated
and real portal images, lead to good results (RMS error lower than 2
mm).

1 Medical Context

Introduction This work is done in collaboration with physicians from Lyon’s
Léon Bérard Institute (France) and concerns cancer treatment by conformal ra-
diotherapy. The goal of radiotherapy is to accurately deliver a curative dose of
X-rays (produced by linear accelerators) to the tumor while sparing surround-
ing normal tissues. With help of a computed tomography (CT) scan, physicians
create a Radiotherapy Treatment Planning (RTP) which plans irradiation ses-
sions, with one irradiation per day during several weeks. During each session,
the patient must be in the same position as he was during CT acquisition.

However, it is a very difficult task to exactly position the patient in the
same position each day and studies have shown that setup inaccuracies could
lead to poorer local control or survival [1]. Numerous studies have evaluated
displacements (see [2, 3]), they relate a mean setup error between 5.5 mm and
8 mm (the maximum could reach 18 mm). Even in recent series, displacements
still remain important: 22 % of displacements are between 5 and 10 mm [2]
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and 57 % greater than 4 mm [3], despite the use of immobilization devices
(such as polyurethan foam cast or thermoplastic mask). Such systems generally
reduce setup errors but without eliminating all errors [4]. In order to control
patient pose, a solution is to use images from EPID (Electronic Portal Imaging
Devices) [5]. Portal Images (PI) are 2D projection images and are acquired with
the irradiation device. By visual inspection, physicians have the possibility to
roughly correct the position of the patient, but it is both inaccurate and time-
consuming. Moreover, as conformal radiotherapy uses smaller margins around
the target volume, high precision becomes more and more needed to be sure that
no target is missed, with the risk of local recurrence.

We propose in this study an automatic method for setup errors evaluation.
The next section presents related work, section 2 described the geometrical part
of the registration and the intensity-based similarity measures. Experiments and
results are in the section 3.

Related Works Several image registration methods have been used to com-
pare control images (obtained from EPID or other modalities such as ultrasound
images [6] or radiographic film [7]) with a reference image (CT scan). Most of
the studies on this subject use a segmentation procedure: some features (bony
structures) are extracted from the images and registered. Bijhold et al. [7] use a
manual segmentation of bony outlines visible in both portal (a film) and refer-
ence images. Other methods [8, 3] use anatomical landmarks: several homologous
points are determined in both images and then matched. Marker-based methods
have also be proposed [9, 10]: they consist in the implantation of radio-opaque
markers inside the body of the patient. However, the markers have to be fixed in
the tumor volume, which is an important restriction for implantation. Fully 3D
method was proposed in [11], and was based on the registration of a 3D surface
extracted from the CT scan with several image contours, segmented from the PI.
Numerous methods use digitally reconstructed radiographs (DRR). DRR are 2D
projection images computed by a specific volume-rendering (pinhole projection
model) from the CT-scan. Gilhuijs et al. [12] developed a 3D method with par-
tial (segmented) DRR. However, the segmentation is a difficult task and often
fails [13] because PI have very low contrast (due to the high energy, 5-20 Mega-
volt). In order to avoid or help segmentation, some authors use intensity-based
methods, based on a similarity measure computed with the value of (potentially)
all the pixels (see section 2.3). Few works about 3D image registration using such
techniques in this context have been published [14, 15, 16, 17].

2 Intensity-Based 2D/3D Registration

2.1 Overview of the Method

In this work, we focus on rigid transformation, denoted by T (3 translation and
3 rotation parameters). The CT scan is denoted by V . In-plane (2D) registration
of a single DRR with a single PI is known to be inaccurate in case of out-of-plane
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rotations or large translations [7, 18, 13]. Hence, we use several PI and several
DRR. In practical situation, due to the limited amount of radiation received by
the patient, two (n = 2) PI are acquired from orthogonal viewpoints. The ith PI
is denoted by Ii, and the corresponding projection matrices (obtained with a
calibration procedure) are denoted by Qi. Given a similarity measure S, and I
the vector of n PI’s, the main 3D optimization procedure is:

T̂ = argT max S(QT (V) ,I ) (1)

In eq.(1), QT (V) denotes a vector of n DRR, according to the n projection
Qi and the patient displacement T . Each iteration of eq.(1) requires the (on-line)
generation of n DRR. However, this is a too long process to be tractable. Several
authors have study ways to speedup DRR generation [19, 12, 16], at the cost of
DRR’s quality (and thus the quality of the similarity criterion). We choose to
study another solution which is to generate a set of DRR before the registration
stage, when there is no time limitation.

2.2 Geometrical Transformation Approximation for DRR
Generation

During an iteration of eq.(1), a DRR must be generated from a given projection
QT (subscript i is omitted for clarity). It is obviously impossible to pre-generate
DRR from all the possible orientations. Moreover, the space P of projections,
even bounded to the space of plausible projections (e.g. rotations lower than
10 degrees, translations lower than 2 cm) has 6 dimensions, and it is difficult
to efficiently sample this space. Our main idea is to reduce the dimensionality
of P by only considering out-of-plane rotations (2 parameters) and using in-
plane (2D) transformations to retrieve ideal projection QT . This decomposition
assumes that the 3D displacements which make in-plane registration fail, are
due to out-of-plane rotations. Obviously, this is not theoretically true because
the projection model is a pinhole one. However, the distance between the camera
and the patient is much more larger than the patient displacement amplitude,
and our experiments show that this approximation is sufficient for our purpose.
We are thus looking for a decomposition, described by out-of-plane rotations
(apply before projection by Q) and by in-plane transformation (after Q), which
is the closest to the projection of a given position QT .

We denote by Oz the projection direction. We decompose a 3D rotation into
out-of-plane and in-plane rotations. In-plane rotation is around axe Oz. We
denote by Rα,∆ the out-of-plane rotation of angle α around the axe ∆. Axe ∆
goes through the iso-center O, is orthogonal to the projection direction Oz, and
∆ is parameterized with a single parameter, the angle β according to the Ox
axe (see figure 1). Then, the objective projection QT is replaced by LQRα,∆,
with L an in-plane transformation. In order to find α, β and L for a given T , we
perform a least square optimization, see eq.(2).

LT

RT

}
= argL,α,∆min

∑
x∈H

(QT (x)− LQRα,∆(x))
2 (2)
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Fig. 1. Out-of-plane rotation according to a projection direction Oz, parame-
terized with angle α around axe ∆ in the OxOy plane.

In eq.(2), L can have 3 (2 translations and a rotation) or 4 parameters (with
a scaling factor). The set H is composed of random points x ∈ R

3 . This op-
timization is performed with the Powell-Brent method described in [20]. The
subspace of P , described with the two parameters α and β, can now be sampled.
By bounding such space to plausible rotations and by choosing a sampling rate
(for example 0.5 degrees), it is possible to generate a set DRR before patient
treatment. In conclusion, we replace the expensive DRR generation required at
each iteration of eq. (1) by a two-pass approach: optimization eq.(2) and appli-
cation of the in-plane transformation LT on the pre-computed DRR given by
projection RT .

2.3 Intensity-Based Similarity Measures

Joint Histograms. The relative position of two images is evaluated with an
intensity-based similarity measure which requires no segmentation. Measures,
such as correlation coefficient [21], mutual information [22, 23] or correlation
ratio [24], are all based on joint histograms (even if we do not need to explicitly
compute it). A joint histogram, denoted by HL, is a 2D histogram computed
according to a transformation L between the two images. Quantities HL(i, j) =
nij are computed by summing for each couple of intensities (i, j), the number
of co-occurrent pixels. Probabilities pij (pi =

∑
j pij , pj =

∑
i pij) must then

be estimated from nij . Most authors used a frequential estimation (pij =
nij

n ,
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with n the number of points in the overlapping part of the images). As advocated
in [23], we use Parzen windowing to estimate pij with a Gaussian density function
(probabilities are locally averaged).

A criterion S measures some type of dependence between the two distribu-
tions: according to the assumptions made on the type of the dependence (e.g.
linear, functional), on the type of variable (numerical or categorical), and by
using different diversity measures (variance, entropy), several measures can be
defined [25].

Study of Several Similarity Measures. We studied four measures. The
correlation coefficient (CC [26, 21]), measures the strength of a linear relation
between intensity distributions. χ2 measures a distance to the independence
case (where pij = pi pj ∀i, j). Mutual information (MI [22, 23]) uses relative
Shannon’s entropy to also compute a distance to the independence case. MI is
maximal if a functional dependence exists between the intensities. The correla-
tion ratio (CR [24]) also assumes a functional relation but measures its strength
by the way of a proportional reduction of variance. Following equations express
the three measures (images are denoted I and J , mean is mI =

∑
i ipi, variance

is σ2
I =

∑
i(i−mI)2pi, and the conditional variance σ2

I|j =
1
pj

∑
i(i−mI|j)2pij):

CC(I, J) =
∑
ij

(i−mI)(j −mJ)
σI σJ

pij χ2(I, J) =
∑
ij

(pij − pipj)2

pipj

MI(I, J) =
∑
ij

pij log
pij

pipj
CR(I|J) = 1− 1

σ2
I

∑
j

pjσ
2
I|j

Interpolation is performed by partial volume [22]. CR is not a symmetric
criterion (whereas the others are) and an image (I) must be chosen to estimate
the other (J): the optimization eq.(1) compares the same PI with several DRR
and CR is normalized according to I, so we decided to choose I = DRR and
J = PI. We do not discuss further the properties of such measures, interested
reader could see [22, 23, 24, 25].

In eq.(1), S must quantify similarity between a vector of images couples. A
solution can be to perform a linear combination of the similarity values between
each couples

∑n
i αi S(DRRi, Ii). However, it is not clear how to determine the

weights αi. So, we propose the following original solution: for each images cou-
ples, we update the same joint histogram. Then, a similarity measure (whatever
it is) can be computed from the unique histogram. Moreover, this force the
criterion to measure the same type of dependence for all the images couples.

3 Experiments

Materiel and Method A CT-scan of an anthropomorphic phantom was ac-
quired (88 slices, thickness 3 mm, 5122 pixels of size 0.872 mm2). The artificial
object was positioned on the irradiation table according to several random posi-
tions. For each position, two orthogonal PI were acquired (see figure 2). Size of
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irradiation field corresponds to realistic treatment (about 152 cm at the isocen-
ter, 2802 pixels). We performed two sets of experiments: with simulated data
and with real PI. Simulated PI are generated from DRR computed from known
displacement. Noisy aspect is simulated by smoothing the DRR and adding large
Gaussian noise. Quality of such images was assessed by physician (see figure 2).

Parameters of the initial projection matrices Qi are obtained from a calibra-
tion procedure between CT and accelerator coordinate systems. For each posi-
tion (with generated or real PI), we performed our method in order to obtain an
estimation of the position. The set of pre-computed DRR is the following: out-
of-plane rotations were taken between −7◦ and +7◦ with a sample step k = 0.5◦,
leading to 30× 30 = 900 images. Each estimation was performed with the same
set of parameters, the starting point of the optimization was randomly chosen.

Fig. 2. Portal image, DRR and simulated PI.

Results For each position i we compute the RMS (Root Mean Square) error,
denoted by εi, between the estimation found by our method and the reference
position. The RMS error is the average distance (in millimeter) between points
transformed by the two compared transformations. We used 1000 points spread
inside a cube of 153 cm3 centered at the target point (the tumor) in order to
obtain a realistic error; a RMS error of xmm means that, in average, each
point is xmm away from the desired position. εr denotes the RMS error of the
displacement to be retrieve. Table 1 summarizes results on 100 positions from
simulated images. It depicts mean, median and percentage of estimations which
improve the initial position (εr > εi). Table 2 summarizes results of tests on 7
real couples of PI. For each position, it depicts the initial error εr and final error
εi, obtained with different measures. Last lines depict mean and median RMS
error. Estimations with RMS lower than 3 mm are displayed in grey boxes.

In the first experiment, the four measures are significantly different (using
mixed model two ways ANOVA1), p < 10−6. Using least significant difference
test, neither CR and MI, nor CC and χ2 are significantly different (0.01 level).
But, these two groups are significantly different. For CR and MI, RMS error
1 Analyze of Variance
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εr CC χ2 MI CR

Mean 10.07 3.78 4.63 2.10 2.75
Median 10.24 2.83 4.39 0.85 1.20
εr > ε — 92% 94% 99% 99%

Table 1. First experiment on simulated PI (100 positions): RMS error according
to each similarity measure: mean, median, percentage of improvement.

Positions εr CC χ2 MI CR

1 6.00 2.41 2.78 1.47 1.43

2 6.00 9.79 12.83 21.00 2.00

3 10.00 2.54 15.99 2.88 2.46

4 7.00 2.52 1.18 2.68 1.29

5 3.21 3.62 7.27 5.34 1.95
6 5.29 5.38 3.36 5.82 4.33

7 9.18 18.64 4.49 5.16 2.51

Mean 5.83 5.61 5.99 5.54 1.99
Median 5.34 2.65 2.73 2.75 1.62

Table 2. Second experiment on real PI: initial RMS error (εr) and final estima-
tion error according to each similarity measure. Last two lines depict mean and
median. Grey boxes emphasize RMS lower than 3 mm.

decreases from 10 mm to 1.2/0.85mm (CR/MI). The second experiment shows
weak results with CC and χ2, but also with MI. However, estimations with CR
manage to recover patient pose in almost every cases (only one RMS is greater
than 3) and always improve incorrect pose.

4 Conclusion

We have presented in this paper an original method for patient pose estimation
using 2D portal images and 3D CT scan. The method is fully 3D, avoids seg-
mentation, uses several PI, uses pre-generated DRR and is an intensity-based
registration procedure. In the experimental tests, we obtain good position es-
timations both for simulated and real PI (median RMS is about 1.2 mm with
simulated images and 1.6 mm for real PI). Our approach can be used with any
number of PI (thanks to the unique JH, updated for each couple of images) and
with any types of PI (by use of different similarity measures based on JH, such as
MI or CR). The overall procedure is very fast, less than 3-4 minutes to complete
on a common workstation (Ultra Sparc 5, 333 Mhz). The presented method is
fully automatic and does not require any user intervention. The sampling of the
set of pre-computed DRR plays an important role in the accuracy of the estima-
tion. Experimental results show that 0.5◦ is a good tradeoff between precision
and volume storage.
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Further works are ongoing to improve the optimization procedure, and ex-
periments on larger set of images are planned. The presented method is only
valid for rigid body transformation, but we plan to study non-rigid deforma-
tions and organs displacements with the same principles (DRR generation and
2D transformations).
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