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Abstract. Non-rigid registration can automatically quantify small cha-
nges in volume of anatomical structures over time by means of segmen-
tation propagation. Here we use a non-rigid registration algorithm based
on optimising normalised mutual information to quantify small changes
in brain ventricular volume in MR images of a group of five patients
treated with growth hormone replacement therapy and a control group
of six volunteers. The lateral ventricles are segmented from each subject
image by registering the brainweb image [1] which has this structure de-
lineated. The mean (standard deviation) volume change measurements
are 1.09cc (0.73cc) for the patient group and 0.08cc (0.62cc) for the vol-
unteer group, this difference is statistically significant at the 1% level. We
validate our volume change measurements by comparing them to previ-
ously published results obtained by visual inspection of difference images,
and demonstrate high rank correlation coefficient (ρ = 0.7, n=11).

1 Introduction

Non-rigid registration algorithms have recently been used for quantifying change
in volume of structures over time, and for quantifying differences between mem-
bers of a cohort. One approach is to delineate a structure of interest from one
image, and use the deformation field calculated by non-rigid registration of that
image to a second image to delineate the same structure in the second image
[2]. This approach is sometimes called segmentation propagation [3, 4], and is
illustrated in Figure 1. Most non-rigid registration algorithms are very sensitive
to differences in intensities between images, or to shading artefacts. Non-rigid
algorithms that optimise an information theoretic similarity measure such as
normalised mutual information are less likely to be sensitive to these effects.

Here we apply the non-rigid registration algorithm devised by Rueckert [5]
to study a group of five adult patients being treated with growth hormone re-
placement therapy, and a group of six volunteers. This group was previously
studied using rigid body registration and visual assessment of difference images
[6], and that study determined that the greatest change in the patient images
was a reduction in the volume of the lateral ventricles. We demonstrate that the
non-rigid registration algorithm is able to quantify small changes in volume with
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high precision, and also validate the results it produces by comparing them to a
visual assessment score previously obtained for the same subjects.

The novelty of this work is the use of segmentation propagation to quan-
tify very small changes in clinical serial MR images, and the comparison of
these measurements with results of a blinded visual assessment of difference im-
ages for the same subjects. We use a generic atlas and therefore do not require
subject-specific segmentation. In related work, the ability of the same algorithm
to recover large deformations was validated using a biomechanical model [7].
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Fig. 1. Principle of segmentation propagation. IA represents the atlas image
with a segmented structure, BA, defined by a connected set of boundary points
at voxel locations, shown as dots and lines. I1 and I2 represent the baseline and
repeat images of the patient. Non-rigid registration of IA to I1 and I2 produces
the transformations TA1 and TA2. Registration of I1 and I2 produces the trans-
formations T12 and T21. Image IA is transformed by TA1 and TA2 into the space
of I1 and I2 which results in propagated structures B1 and B2. Because a trans-
formation results generally in translations of boundary points by a non-integer
number of voxels, the transformed set of boundary points does not, in general,
coincide with the voxel locations of I1 and I2.

1.1 Review of Brainweb Simulated Normal Brain Image

The brainweb image is available from the McConnell brain imaging centre, Mon-
treal Neurological Institute. It was created by first registering 27 (1mm isotropic
voxels) T1 weighted gradient echo scans of a normal volunteer [1]. These regis-
tered images were then corrected for RF inhomogeneity and intensity averaged to
produce a high SNR image. This image was then classified into five tissue types:
white matter, grey matter, CSF, fat, background; first automatically using a
clustering algorithm and then by expert manual editing [1].
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1.2 Review of Rueckert’s Non-rigid Registration Algorithm

The non-rigid registration algorithm [5] we use here was designed for the reg-
istration of dynamic contrast enhanced MR breast images acquired only a few
minutes apart. The algorithm uses a free-form deformation (FFD) to model lo-
cal deformation. The FFD is constructed from a 3D tensor product of B-splines,
and deformation is achieved by translating control points while optimising a cost
function consisting of two terms: a measure of image similarity (normalised mu-
tual information), and a regularization term (weighted by λ) that penalises high
bending energy deformations. B-splines have compact support so moving one
control point only affects the spline coefficients in a local neighbourhood and ef-
ficiently models local deformations. The degree of smoothness can be controlled
by adjusting the control point spacing. Because B-splines are inherently smooth
the deformation energy is typically low, hence, here we ignore the regularization
term (i.e. λ = 0). The algorithm’s optimisation involves translating the control
points in steps along the direction of maximum gradient until either the mag-
nitude of the gradient of the cost function is less than or equal to a threshold
(Epsilon, set to zero here) or pre-specified number of iterations is exceeded. Then
the step size is decreased by a factor of two and the process continues.

2 Materials and Methods

Clinical Data and Atlas

The clinical growth hormone dataset consists of three serial T1 weighted MR
scans of six volunteers and five growth hormone deficient patients with an inter-
scan interval of three months. To estimate measurement precision we also ac-
quired three MR scans of another volunteer with the same MR sequence as the
patients, but with an inter-scan interval of less than five minutes. Our atlas (reg-
istration source image) is based on the brainweb normal brain image without
added noise [1] – see review in section 1.1. To reduce image resampling error
during affine registration this was interpolated with a Hanning windowed sinc
kernel (radius 6 zero crossings) from 1 × 1 × 1mm to the same voxel dimension
as the clinical data, 1 × 1 × 1.8mm. We use the brainweb supplied CSF classifi-
cation to define the lateral ventricles, as illustrated in Figure 2. To facilitate the
measurement of volume (change) this ventricular segmentation was converted to
a binary mask image (background voxels = 0, ventricular voxels = 1000).

Registration and Volume Measurement Strategy

Registration was performed as a two stage process. First global motion and gross
differences in head size were compensated for by the affine (12 degrees of freedom)
registration algorithm devised by Studholme [8]. Because of large differences in
orientation between the atlas image and the subject images, starting estimates
within approximately 5mm and 5 degrees were interactively provided prior to
affine registration. Secondly, local deformation was calculated using Rueckert’s
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(a) axial (b) sagittal (c) coronal

Fig. 2. Atlas brain image (1 × 1 × 1 mm voxels) with accurate ventricular seg-
mentation – outlined in white. Brainweb images supplied by McGill university,
Montreal [1].

algorithm [5] (reviewed in section 1.2), first with a coarse grid (10mm control
point spacing) then with a fine grid (5mm control point spacing). The full brain
image was used for the coarse grid registration. For the fine grid registration, a
region of interest (ROI) was defined surrounding the ventricles using the ventric-
ular outline from the coarse grid registration solution dilated by 7mm to include
a boundary layer at least one control point thick around the ROI, see Figure
3(a). Only voxels in this region were used for the fine grid registration, substan-
tially reducing the execution time. For one patient with elongated ventricles,
the dilation was increased as shown in Figure 3(b). To reduce the algorithm’s

(a) 7 mm dilation (b) 25 mm ROI dilation

Fig. 3. (a) Example of the atlas ventricles dilated by 7 mm and mapped to
the space of a patient image. (b) Extra dilation (25 mm) for the patient with
elongated ventricles to compensate for the larger deformation.

sensitivity to noise, especially at the fine control point spacing, the images were
low-pass filtered with a Gaussian (σ = 0.5 voxels).
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Ventricular volume (change) was measured by transforming, using linear in-
terpolation, the ventricular binary mask into the space of the subject images
using the deformation field calculated by non-rigid registration. Linear inter-
polation allowed the partial volume of the transformed boundary voxels to be
calculated to sub-voxel accuracy, as illustrated in Figure 4. The volume of the
mask in the transformed space was calculated by summing the voxel intensities
and dividing by 1000 to give an estimate with a rounding error ≤ 0.05%.

0 1 2 0 1 20 1 2

(b) (c)(a)

tx = 0.5 voxels

Fig. 4. Schematic 1D diagram illustrating volume estimation by linear interpo-
lation of a binary image. Shown in (a) is a voxel of unit intensity with neighbours
of zero intensity. Translating one edge by 0.5 voxels increases the volume by 50%,
shown as a dark grey region in (b). The neighbouring voxel is interpolated with
an intensity of half a unit (c). Hence the measured volume will be 1 voxel in (a)
and 1.5 voxels in (c).

3 Results

The measured ventricular volume for the three consecutive volunteer scans was
26.58cc, 26.49cc, 26.50cc which gave a measurement precision of σ = 0.05cc for
the three consecutive scans.

The mean ventricular volume and volume change for the growth hormone
study subjects at the 0, 3 and 6 months timepoints is shown in Table 1. Over
six months there was a mean 1.2cc (5.5%) decrease in ventricular volume for
the patient group compared to a 0.18cc (1.1%) increase for the controls. To
test whether the volume change measurements for the two groups differed sig-
nificantly, the Wilcoxon rank sum test (Matlab, Mathworks Inc, Natick, MA,
USA) was used with the null hypothesis that there was no difference between
the groups. This gave p = 0.013 (5% significance) for the 0 and 3 month scans
and p = 0.001 (1% significance) for the 0 and 6 month scans. The p-values for
both pairs of timepoints was p = 0.0016, which compares with p = 0.0001 found
in our previous study involving qualitative ranking of difference images using a
seven point scale [6]. To further compare the volume change measurements with
those from the previously published study, we calculated the rank correlation
coefficient (ρ), this gave ρ = 0.76 for zero to three months, ρ = 0.72 for zero to 6
months, and ρ = 0.67 overall. The ρ values indicate a significant correlation with
the previously published visually assessment results at the 5% level, see [9] for
n = 11. Figure 5 shows graphically the ventricular volume and volume change
at the 0, 3 and 6 month timepoints for each of the eleven subjects.
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Table 1. Mean (std) measured ventricular volume (cc) for patients and volun-
teers.

Mean (stdev) ventricular volume (cc)

timepoint

group 0 months 3 months 6 months

patients 21.96 (6.16) 20.98 (6.66) 20.76 (6.73)
volunteers 16.08 (7.70) 16.06 (7.90) 16.27 (7.69)

Mean (stdev) of ventricular volume change (cc)

timepoints

group 0 to 3 months 0 to 6 months overall

patients -0.98 (0.76) -1.20 (0.76) -1.09 (0.73)
volunteers -0.02 (0.81) 0.18 (0.42) 0.08 (0.62)
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Fig. 5. Ventricular volume for the 11 subjects in the clinical growth hormone
study. (a) and (b) refer to the measured ventricular volume for the 6 volunteers
and 5 growth hormone patients at the three timepoints respectively. (c) and (d)
refer to the change in ventricular volume from 0 to 3 months and from 0 to 6
months for growth hormone patients and volunteers respectively.
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(a) axial (b) sagittal (c) coronal

Fig. 6. Example of segmentation propagation for patient 1. The boundary of
the propagated ventricles is shown outlined in white.

4 Discussion and Conclusions

A key strength of Rueckert’s non-rigid registration algorithm [5] is that it uses
the mutual information (NMI) similarity measure whereas other non-rigid algo-
rithms [10, 11] are based on intensity differences. Mutual information has the
capability of registering images with non-linearly related voxel intensities. As a
result, accurate registration of images that are derived from different scanners
and images that are not corrected for intensity inhomogeneity is possible. So a
generic brain atlas can be used without needing to acquire and segment extra
volunteer images, as was required in previous work (e.g.[3]).

In this paper we have demonstrated that this approach is precise when ap-
plied to consecutive scans of a single subject (σ < 0.05cc) and that small changes
of brain ventricular volume (≈ 1cc) can be quantified by segmentation prop-
agation using the Rueckert non-rigid registration algorithm. This is the first
time that a non-rigid registration algorithm based on optimisation of mutual
information has been shown to detect volume changes of this magnitude. These
measurements are sufficiently accurate to significantly (p ≈ 0.01) determine ven-
tricular volume change for a group of five growth hormone patients compared to
a group of six normal subjects. We have been able to validate the algorithm by
demonstrating high correlation (ρ ≈ 0.7, n = 11) between these results and those
previously reported from ranking of differences images after rigid registration of
the same images [6].

Although our results indicate high precision for one volunteer, and the set
of measurements correlate with the previously published ones, the error appears
to be larger than this precision value would suggest for individual cases. In
particular, the measurements for volunteers v2 and v5, see Figure 5, indicate
volume decreases of up to 1cc. Such decreases are inconsistent with the previous
published results and implausible biologically and are most likely to be the result
of registration error. Further improvements to the method of registration would
probably reduce these errors.
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