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Abstract. Since the introduction of Computed Tomographic Colonog-
raphy (CTC), research has mainly focused on visualization and naviga-
tion techniques. Recently, efforts have shifted towards computer aided
detection (CAD) of polyps. We propose a new approach to CAD in CT
images that attempts to model the way a radiologist recognizes a polyp
using optical flow fields (OFF). Features extracted from OFFs are used
by a linear classifier for polyp detection. An initial validation of our tech-
nique resulted in an average of 75% specificity at 100% sensitivity in a
10-fold cross validation study on a set of 220 polyp-like structures, 20 of
which were true polyps.

1 Introduction

Computed Tomographic Colonography (CTC) was suggested in the early 1980’s
and realized in the 1990’s as a minimally invasive method that would make mass
screening of colorectal cancer feasible [1,2,3,4]. Since then several studies were
conducted to assess the performance of CTC [5,6,7,8,9,10]. In almost all studies,
CTC was based on the examination of CT images by an expert radiologist, using
either the 2D images, 3D virtual colonoscopic views or both. Thus, until recently
most efforts were directed towards developing better visualization and navigation
techniques [4,11,12,13,14,15,16,17,18,19]. Lately, more effort has been put into
computer aided detection (CAD), whose ultimate goal is to identify polyps in a
3D CT data efficiently, and with high sensitivity and specificity. Mir et al. reviews
a set of techniques that can be used for shape description in CT images [20].
We are aware of two studies on CAD in CTC: Summers et al. reported a shape
based polyp detector and concluded that CAD is feasible in CTC [21] and Paik
et al. proposed a Hough Transform-based polyp detector [22,23]. However, these
CADs suffer from low specificity, which would require radiologists to examine a
large number of CAD hits to rule out false detections.
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The goal of our research is to develop a highly sensitive and specific CAD
for CTC. We attempted to model the way a radiologist recognizes a polyp by
focusing on the changes in consecutive images as one views sequential cross-
sections of the volumetric source CT data (3D CT data). We used Optical Flow
Fields (OFF) to represent these changes, and a linear classifier acting on these
features to recognize true polyps.

2 Method

2.1 Data Acquisition

Patients were imaged in the supine position after colon cleansing and air-insuffla-
tion of the colon on a GE HiSpeed Advantage single detector or GE LightSpeed
multi-row detector scanner (GE Medical Systems, Milwaukee, WI). Typical ac-
quisition parameters were 3 mm collimation, pitch 1.5-2.0, 1.5 mm reconstruc-
tion interval, 120 KVp, 200 MAs for the single detector scanner and 2.5 mm
collimation, pitch 3.0, 1.0-1.5 mm reconstruction interval, 120 KVp, 56 MAs
for the multi-row detector scanner. Data were stored as 2 byte unsigned in-
tegers. The size of the 3D data matrix was 512 × 512 × N , N is the num-
ber of axial slices. N is typically around 350. The average voxel spacing was
0.74mm× 0.74mm× 1.31mm.

2.2 Initial Detection

The data was preprocessed by a Hough Transform-based polyp detector (HTD)
[22,23]. HTD basically computes the normals to an isointensity surface and
searches for voxels at which a large number of normals intersect. Defining the
number of normals that intersect in a given voxel as the HT score of that voxel, a
threshold is applied for detection. Typically the voxels at the centers of spherical
structures have high scores. The detected voxels mark the locations of polyps
with high sensitivity but low specificity. We extracted a subvolume consisting
of 21 × 21 × 21 voxels centered on each detection with a score above a fixed
threshold.

2.3 Optical Flow Field Computation

The aim of the OFF computation is to characterize the change in the location
of the edges (tissue/air boundary) in the image plane while scrolling back and
forth along the third dimension. This third dimension can be thought as the
time axis [24]. If we name the image plane as the xy-plane then the basic optical
flow equation is [25]:

∇I.v +
∂I

∂t
= 0 (1)

where v(x, y) is the OFF and I(x, y) is the image, i.e. the intensity function.
Equation 1 allows only the computation of v⊥, the component along the local
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∇I. This serves to our purpose and it is simple. We will refer to v⊥ as v in what
follows.

Keeping in mind that the coordinates of the voxel detected by HTD (HT hit)
is (0, 0, 0), vt(x, y) is computed for x, y, t ∈ [−10, 10]. t is first incremented from
0 to 10 and then from 0 to -10. This is equivalent to moving outwards from the
center. This assures the consistency in the direction of motion of the edges of
spherical structures. vt(x, y) are summed and the resulting OFF is filtered with
a moving average filter of window size of 3× 3 cells as

vi(x, y) = Moving Average (Σtvt(x, y)) , i ∈ X,Y, Z (2)

Each vi(x, y) corresponds to scrolling along the direction i.

2.4 Optical Flow Field Characterization

The OFF characterization starts with the detection of the parent and the child
nodes. The parent node is defined to be the minimum divergence point in the
vicinity (±2 cells) of the HT hit. This is the most likely location of the center of a
polyp. The child nodes are defined to be the points on the incoming streamlines,
5 units away from the parent node. There are 8 child nodes, each corresponding
to a streamline ending at a different immediate neighbor of the HT hit.

A topology based quantitative characterization of the vi(x, y) , i ∈ X,Y, Z,
at the parent node, is employed. It is represented as a point on the 2D αβ-plane,
where α and β are defined as follows [26]. Let

J =

[
∂vx

∂x
∂vx

∂y
∂vy

∂x
∂vy

∂y

]
, (3)

P = −trace(J), (4)
Q = |J|, (5)

then

α = P, (6)

β = sign(P 2 − 4Q)
√
|P 2 − 4Q|. (7)

α and β essentially carry the information present in the eigenvalues of the char-
acteristic equation

λ2 + Pλ+Q = 0 (8)

They depend on the local divergence, curl and magnitude of the OFF. The origin
of the αβ-plane corresponds to a uniform OFF.

As the third feature, the angular spread of the locations of child nodes around
the parent node is defined as



640 B. Acar et al.

−10 0  10 
−10

0  

10 
Axial Optical Flow Field Axial Slice #1

Axial Slice #2 Axial Slice #3

Fig. 1. 3 axial images (smoothed for visual purposes) and the axial OFF. The
parent node is marked with a small square and the child nodes are marked with
small circles. 3 of the 8 child nodes are coincident.

d =
1
8
Σi

(√
Σjθ2

ij

)
, θij = � (childi, childj) ∈ [0, π], (9)

taking the parent node as the origin. Larger d’s indicate increased spread of the
child nodes around the parent node.

The 3D feature vector, [α β d], is computed for all three vi(x, y) , i ∈ X,Y, Z.
The median value for each feature is used in the final 3D feature vector used
for classification. Figure 1 shows three axial images of a polyp, corresponding to
three different t values (the image plane is the axial plane) and the computed
OFF associated with this t-axis (t ≡ z).

3 Preliminary Analysis

Data were acquired from 8 patients (7 male and 1 female with age 41-85, mean
age 63) as described in Section 2.1. Preprocessing with a HT score threshold
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of 10000 resulted in 220 HT hits. Fiber optic colonoscopy results showed that 7
patients had a total of 20 polyps and that all polyps were detected by HTD. This
means that the HTD, with the current threshold value, had 100% sensitivity and
a high false positive rate. These 220 HT hits were used as inputs to our algorithm.

We randomly divided the data set into 10 equal size mutually exclusive sub-
sets, such that each subset contains 2 true positive and 20 false positive HT hits.
For each of 10 experiments, one of these subsets was used as the test set and the
remaining nine subsets were used for training. We used a Mahalanobis distance
based classifier. The Mahalanobis distance of a vector f to the mean vector, mΓ ,
of a population, Γ , is defined as [27],

rf ,mΓ =
√
(f − mΓ )T C−1

Γ (f − mΓ ) (10)

where CΓ is the covariance matrix of Γ . We added a bias term, b, to r that is
used to trade off specificity and sensitivity of the classifier as

rf ,mΓ1
− rf ,mΓ0

+ b ≤ 0 ⇒ f ∈ Ω1 (11)
otherwise ⇒ f ∈ Ω0

where, Γ represents the training set and f represents a sample from the test set,
Ω. The subscript ’1’ refers to the subset of true positives, while the subscript ’0’
refers to the subset of true negatives.

In an attempt to assess the potential of OFFs in polyp identification, we mea-
sured the maximum specificity at 100% sensitivity, for each experiment, where
the specificity was defined as the percentage of correctly identified non-polyp
structures in each test set. The maximum specificity values at 100% sensitivity
for each experiment was: 0.85, 0.85, 0.35, 0.90, 1.00, 0.15, 0.80, 0.80, 0.85, 0.95.

The analysis of an individual subvolume lasted 3.0 seconds using MatlabTM

6.0 (The Mathworks Inc., MA, USA) on a PC with 1GHz Pentium III processor.
The time measurements exclude the subvolume extractions.

4 Discussion

Our ultimate goal is to decrease the radiologists’ reading time by directing them
towards the true polyps. To do this, we model the way a radiologist recognizes a
polyp in 3D CT data based on the motion of edges as one scrolls back and forth
through parallel planes transecting a suspicious structure. It is obvious that the
choice of scrolling direction affects the computed OFF. We tried to decrease
this dependency by performing the analysis in three orthogonal directions and
using the median values of each feature. A more robust approach would be to use
multiple scrolling directions and construct a feature vector out of the histograms
of measured feature values. Using additional features, like the homogeneity of
the region of interest, might also improve performance.

We have observed that the divergence of the OFF at the parent node is of
particular relevance for polyp identification. As such, the α and β parameters
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derived from the Jacobian of the OFF are very appropriate because they not
only represent the information in the eigenvalues of the Jacobian matrix, but
also the parameter α directly corresponds to the divergence of the OFF.

One of the two polyps in the test set of experiment 3 was completely hidden
on the sagittal plane and could be seen properly only in the coronal plane. The
median operation eliminated the measurements from the coronal plane, degrad-
ing the performance of the system (specificity was 0.35). The low specificity level
of experiment 6 (0.15), on the other hand, is due to the large cancerous tumor
(3.2cm in diameter) in the test set. Such big structures cannot be detected by
OFFC with the current parameters, especially the subvolume size. These ob-
servations also suggest that increasing the number of scrolling directions would
improve the performance.

The classifier we used performs linear discriminant analysis based on the
minimization of the Mahalanobis distance between the learning and the test
samples. The advantages of using the Mahalanobis distance are: (i) It automat-
ically accounts for scaling, (ii) it takes care of the correlation between features
and (iii) it can provide linear and curved decision boundaries. Another possible
classifier would be the Support Vector Machines (SVM) [28]. SVMs are capable
of trading off the training error with the generalization error. They can work
practically in infinite dimensional feature spaces. The choice of the parameters
and the feature space is critical for SVMs’ performance and is the subject of
future work. SVMs can even be used to learn directly from the computed OFFs,
without extracting specific parameters, like α, β, d. This requires an appropriate
kernel definition.

Our method is aimed to improve the HT-based CAD results by increasing
the specificity without sacrificing sensitivity at a given operating point set by
the HTD threshold. The specificity levels given in Section 3 show the achievable
specificity levels at the operating point corresponding to the HTD threshold of
10000. It should be noted that in this data set HTD performs with high specificity
levels (average of maximum specificity level over 10 experiments is 84 ± 20%
at 100% sensitivity) at some other operating points. The improvement due to
OFFC in specificity at those operating points would be different. Thus a direct
comparison of this mean specificity level with that of OFFC post-processed data
(mean specificity of 75±27.5% at 100% sensitivity) is not possible. Moreover, the
correlation coefficient between HT scores and the α, β, d parameters are -0.44,
-0.05, 0.14, respectively. These results also support that the OFFC parameters
assess different qualities of the CTC data. A more detailed analysis is given in
[29,30].

The results presented here demonstrate the relevant information in OFFs for
polyp detection in virtual colonography. However, higher specificity levels are
required for practical clinical applications. Typically, the HTD threshold needs
to be set low enough for 100% sensitivity, and that results in high false positive
rates. Recent experiments that we conducted on a larger dataset that has low
specificity at 100% sensitivity using HTD alone showed a significant increase in
specificity without sacrificing the sensitivity set by HTD parameters [29,30].
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It would also be possible to use the present method to detect polyps directly
from the 3D CT data without the need for the HTD. The OFFs associated with
different scrolling directions could be computed for the whole volume and then
classification could be performed only in the vicinity of the colon, based on α, β
and d values.

5 Conclusion

We showed that the idea of modeling the way a radiologist recognizes polyps in
3D CT data is feasible. Optical flow fields (OFF) provide a robust framework for
quantitative analysis of inter-slice relations in the 2D CT images. Although many
different features can be extracted from OFFs, we showed that α, β and d carry
relevant information for polyp recognition. However, several other features may
be useful to obtain better performance. Further research is required to optimize
the feature space and the classifier.
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