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Abstract. Statistical shape models show considerable promise as a ba-
sis for segmenting and interpreting images. A major drawback of the
approach is the need to establish a dense correspondence across a train-
ing set of segmented shapes. By posing the problem as one of minimising
the description length of the model, we develop an efficient method that
automatically defines a correspondence across a set of shapes. As the
correspondence does not use an explicit ordering constraint, it gener-
alises to 3D shapes. Results are given for several different training sets of
2D boundaries, showing the automatic method constructs better models
than ones built by hand.

1 Introduction

Statistical models of shape show considerable promise as a basis for segmenting
and interpreting images [4]. The basic idea is to establish, from a training set,
the pattern of ‘legal’ variation in the shapes and spatial relationships of struc-
tures in a given class of images. Statistical analysis is used to give an efficient
parameterisation of this variability, providing a compact representation of shape
and allowing shape constraints to be applied effectively during image interpre-
tation [5]. One of the main drawbacks of the approach is, however, the need -
during training - to establish dense correspondence between shape boundaries
over a reasonably large set of example images. It is important to establish the
‘correct’ correspondence, otherwise an inefficient parameterisation of shape can
result, leading to difficulty in defining shape constraints. In practice, correspon-
dence has often been established using manually defined ‘landmarks’; this is
both time-consuming and subjective. The problems are exacerbated when the
approach is applied to 3D images.

Several previous attempts have been made to automate model building [T, 2]
3 9], 10, 0T 2] 14, (16, 18] . The problem of establishing dense correspondence
over a set of training boundaries can be posed as that of defining a parameterisa-
tion for each of the training shapes, leading to implicit correspondence between
equivalently parameterised points. Different arbitrary parameterisations of the
training boundaries have been proposed [, [12] , but do not address the issue of
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optimality. Shape ‘features’ (e.g. regions of high curvature) have been used to
establish point correspondences, [2] [11] [18] but, although this approach corre-
sponds with human intuition, it is still not clear that it is in any sense optimal.
A third approach, and that followed in this paper, is to treat finding the correct
parameterisation of the training shape boundaries as an explicit optimisation
problem.

The optimisation approach has been described by several authors [3] [6], 9]
14], [16]. The basic idea is to find the parameterisation of the training set that
yields, in some sense, the ‘best’ model. We have previously described a minimum
description length criterion that describes a set of shapes as efficiently as possible
[6]. We showed that, by optimising the parameterisation of each shape, we could
produce models that were superior to those built by hand. The optimisation
scheme was, however, inefficient and took many hours to converge. In this paper,
we describe a more efficient method and also consider the pose transformation
for each shape. As the method applies only an implicit ordering constraint, it
can be used on 3D shapes.

2 Statistical Shape Models

A statistical shape model is built from a training set of aligned example shapes.
Each shape, ¥; (i = 1...ny), can (without loss of generality) be represented by a
set of n points sampled along the boundary. These points are sampled according
to the parameterisation, @; of the shape. By concatenating the coordinates of its
sample points into a 2n-dimensional vector, x (where n is the number of points
sampled on each shape), and using principal component analysis, each shape
vector can be explained by a linear model of the form

x=%X+Pb (1)

where X is the mean shape vector, the columns of P describe a set of or-
thogonal modes of shape variation and b is a vector of shape parameters. New
examples of the class of shapes can be generated by choosing values of b within
the range found in the training set. This approach can be extended easily to deal
with continuous boundary functions [14], but for clarity we limit our discussion
here to the discrete case.

The utility of the linear model of shape shown in ([Il) depends on the ap-
propriateness of the set of boundary parameterisations {®@;} that are chosen.
An inappropriate choice can result in the need for a large set of modes (and
corresponding shape parameters) to approximate the training shapes to a given
accuracy and may lead to ‘legal’ values of b generating ‘illegal’ shape instances.
For example, consider two models generated from a set of 17 hand outlines.
Model A uses a set of parameterisations of the outlines that cause ‘natural’
landmarks such as the tips of the fingers to correspond. Model B uses one such
correspondence but then uses a simple path length parameterisation to position
the other sample points. The variance of the three most significant modes of
models A and B are (2.13, 1.16, 0.61) and (4.39, 1.56, 1.08) respectively. This
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suggests that model A is more compact than model B. All the example shapes
generated by model A using values of b within the range found in the training
set are ‘legal’ examples of hands, whilst model B generates implausible examples
- this is illustrated in Fig. [].
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Fig. 1. The first three modes of variation (£30) of models A and B

The set of parameterisations used for model A were obtained by marking the
‘natural’ landmarks manually on each training example, then using simple path
length parameterisation to sample a fixed number of equally spaced points be-
tween them. This manual mark-up is a time-consuming and subjective process.
In principle, the modelling approach extends to 3D, but in practice, manual land-
marking becomes impractical. We aim to overcome these problems by building
shape models automatically.

3 Automatic Model Building

We wish to optimise the parameterisations {®;} of each shape in our training set
{®;}. Since we wish to obtain a compact model with good generalisation ability
we define the ‘best’ model as that which can account for the observations (the
training shapes) in as simple a way as possible.

The configuration space of {®;} is highly non-linear and has many local min-
ima. Although stochastic optimisation techniques such as simulated annealing
[13] and genetic algorithms [7] search for a truly global minima, they take many
hours to converge. We overcome this problem by optimising {®;} using a mul-
tiresolution approach. This allows a local optimisation method to be used at
each resolution. We have used the Nelder-Mead simplex algorithm to produce
the results in section F]

3.1 An Information Theoretic Objective Function

To select a suitable objective function we must state the desirable properties of
a statistical shape model. Ideally, we would like a model that is general (it can
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represent any instance of the object - not just those seen in the training set),
specific (it can only represent valid instances of the object) and compact (it can
represent the variation with as few parameters as possible). We therefore choose
to follow the principle of Occam’s razor : the simplest explanation generalises
best. In our case, we need to find the simplest explanation of the training set.

We choose to code the training set (to some given accuracy ¢) with a linear
shape model of the form:

XiZ)_(—i-Pbi—‘rI'i (2)

where X is the mean of {x;}, P has m columns which are the m eigenvectors
of the covariance matrix of {x;} corresponding to the m largest eigenvalues \;,
b; is a vector of shape parameters, and r; is a vector of residuals.

We have shown elsewhere [6] that a lower bound for the total information
required can be obtained that is independent of the choice of representation
of (X, {x;},P,{bi},{r:}). The only free parameter is m, the number of shape
modes in P. The variable part of this lower bound is given by

F(m) = (np + 1) Z log(Aj) + [np(ns = 1) = (np + ns)lmlog(Ae) — (3)

where n; is the number of shapes, n, = 2n, twice the number of sample points
on each shape and A\, = % Z?ﬁm_ﬂ Aj.

The first term is analogous to the determinant of the covariance of {x;}
used by Kotcheff and Taylor [T4] and favours a model with much variation de-
scribed by a small number of modes. The second term penalises a large number
of modes and/or large residuals. The optimal trade-off between describing sys-
tematic variability using the model versus describing each shape individually can
be determined by varying m exhaustively between zero and an upper bound on
m given by A, > 12a),./(27e), where a = (np(nrgﬂzz(npfns) ).

Frin, the minimum of F' with respect to m can be used to asses the quality
of a given model.

3.2 Multiresolution Parameterisation

Our training data are a set of shapes {¥;} represented parametrically as curves:
U;(t), (0 < t < 1). We can manipulate the correspondences of the shapes by
reparameterising these curves:

Ui(t) — Wi(t), t =&;(t), where {;:[0,1] — [0,1]} (4)

We select n corresponding uniformly sampled points from the reparame-
terised shapes. The method described in this section is applicable to both open
and closed curves; for clarity, we will limit our discussion to the closed case.

Each @;(t) must be a homeomorphic mapping of the interval [0,1]. We use a
piecewise-linear approximation of each parameterisation @;(t) by specifying a set
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of n. control points, on each shape and linearly interpolating between them. The
configuration space is therefore (sn.)-dimensional. This search space is generally
too large for a direct optimisation scheme to converge rapidly and reliably. We
overcome this by using the following multiresolution approach:

— We begin with one control point, pi;, on each shape. This point is allowed to
assume any value in the range [0,1]. We use linear interpolation to sample
n/2 points between [0, p1;] and [p14, 1], see figure [Za). We find the values of
{p1:} that minimise F},;,. Once these values are found, they are fixed and
recorded.

— We place two additional control points ps; and ps; between 0 and p;; and
between pq; and 1 respectively. We equally space n/4 points in the intervals
[0, pail, [p2:, P14], [P1i, P3i] and [pss, 1] (see figure [2b)). We fix and record the
optimal positions of {ps;} and {ps;}

— We continue adding additional control points in a similar fashion between
the fixed control points {p;} until the parameterisation is suitably defined.

See figures ([Zk) and (ZH).
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Fig.2. A Demonstration of Parameterising a Circle. The ‘X’ represents the
origin, the circles represent the current (flexible) control points and the squares
represent the fixed control points. At each iteration, the current control points
are allowed to move between the endpoints of the arrow.

At each iteration, the position of each control point is initialised as halfway along
its allowed range - the equivalent of an arc-length parameterisation. As we have
not used an explicit ordering constraint, the method may be used on shapes in
3D (see [0] for details).

3.3 Dealing with Pose Transformations

The pose of each shape affects the value of F,,;,. We therefore need to optimise
the four parameters that allow a rigid transformation of each shape: translations
dy,d,y, scaling s and rotation 0. We have found that adding an additional 4n;
dimensions to each iteration significantly slows the optimisation and introduces
many additional false minima. Better results can be achieved by performing a
procrustes analysis [8] of the reparameterised shapes inside the objective func-
tion, before calculating the value of Fip.
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4 Results

We tested our method on four different sets of object outlines. The algorithm

was run for four iterations, giving 16 control points per shape. We compare

the results to models built by equally-spacing points along the boundary and
hand-built models, produced by identifying a set of ‘natural’ landmarks on each
shape.

Our training sets consisted of manual-segmentations taken from:

Hand Outlines 17 images of a hand.

Rat Kidney 15 transverse, multislice T2-weighted magnetic resonance images
(MRI) of rat kidneys. The repetition time was (TR) 2 sec; echo time (TE) 20
msec and slice thickness 1 mm. 41 contiguous transverse slices were acquired
with a 64 x 64mm field of view and a 256 x 256 x 41 image matrix. A single
slice - containing most evidence of the collecting apparatus - was chosen from
each image and the right kidney segmented.

Stroke Model 23 images collected from a previous study where permanent fo-
cal cerebral ischaemia was induced in rats [19]. For this study, only data from
saline-treated animals were used. The experiment used in vivo multislice T2-
weighted MRI as described in [19]. A single transverse slice was segmented,
chosen with reference to an atlas of anatomy [I5] and corresponded to an
anatomic location 6.3 mm posterior to the bregma.

Knee Cartilage 15 T1-weighted MR images of the femoral articular cartilage
[I7). A single sagital slice was chosen from the centre of the lateral femoral
condyles. As the width of the femur varies from subject to subject, we iden-
tified comparable slices by selecting the slices halfway between (1) the first
evidence of the lateral aspect of the meniscal horn and (2) the full extent of
the posterior cruciate ligament.

In figure [3, we show qualitative results by displaying the variation captured by
the first three modes of each model (the first three elements of b varied by +20).
We also give quantitative results in table [l tabulating the value of F;,, the
total variance, and variance explained by each mode for each of the models.

The qualitative results in figure[3 show that the shapes generated within the
allowed range of b are all plausible. The quantitative results in table [[Jshow that
our method produces models that are significantly more compact than either the
models built by hand or those obtained using equally-spaced points.

To test the generalisation ability of the models, we performed leave-one-out
tests on each model described in table[Il In figure @ we report the results on the
hand outlines although the same trends appear in all datasets. As can be seen
from the figure, the optimised model performs significantly better than both the
manual and arc-length parameterised models for the entire range of included
modes, suggesting better generalisation ability.

5 Conclusions

We have described an efficient method for automatically defining a set of dense
correspondences to build statistical shape models. Results show that the models
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Fig. 3. The first three modes (j = 1,5 = 2,j = 3) of variation (£20)of the mod-
els automatically generated from (a)hand outlines, (b)kidneys, (c) knee cartilage
and (d)Stroke Model.

produced by our method are more compact and general than models built by
hand - the current gold standard.

Our method finds an isomorphic mapping between each of a set of shape
contours and the mean. Since it does not use an explicit ordering constraint,
it generalises to higher-dimensional spaces. By starting our optimisation from
equally-spaced points, the worst model the method can possibly produce is a
procrustes-aligned, arc-length parameterisation.

Regular Principal Component Analysis can not capture non-linear variations
(e.g caused by a sub-part rotating in the plane) with a single mode - this affects
the generalisation ability, specificity and compactness of such linear models. The
method described in this paper overcomes this by allowing points to ‘slide’ along
the parameterisation to compensate for the non-linear movement - this allows
the variation to be explained by a single mode.

We are currently experimenting with more continuous representations of the
parameterisation using the cumulative distribution defined by a set of basis func-
tions. We intend to generalise the principle so that it can be used to reparame-
terise the sphere and hence surfaces rendered from 3D images.



64 R.H. Dayvies et al.

Hands Kidneys
Mode|Automatic|Hand Built|Equally-spaced Mode|Automatic|Equally Spaced
1 1.20 2.13 4.39 1 128.2 306.19
2 0.68 1.16 1.56 2 53.98 197.18
3 0.39 0.61 1.08 3 33.65 109.86
4 0.21 0.50 0.67 4 28.57 70.20
5 0.08 0.15 0.36 5 14.50 41.98
6 0.04 0.14 0.26 6 8.55 23.63
Vr 2.69 5.04 8.72 Vr 284.48 802.72
|Fmin |31477 |41563 |45272 |Fmin |4722 |5485

Knee Cartilage Stroke Model
Mode|Automatic|Hand Built| Equally-spaced Mode|Automatic|Equally Spaced
1 6.90 8.03 8.07 1 684.29 1389
2 0.68 1.29 1.36 2 306.62 581.7
3 0.32 0.66 0.69 3 59.47 174.5
4 0.17 0.22 0.23 4 54.65 88.70
5 0.11 0.17 0.18 5 36.59 40.51
6 0.08 0.10 0.11 6 27.15 34.9
Vr 8.47 10.73 11.24 Vr 12385 23135
(Frin 25133 [35969 [37941 | (Frin [3412 [4752 |

Table 1. A quantitative comparison of each model showing the variance ex-
plained by each mode. Fy,;, is the value of the objective function and Vr is the
total variance.
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