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Abstract. In this article we merge point feature and intensity-based
registration in a single algorithm to tackle the problem of multiple brain
registration. Because of the high variability of the shape of the cortex
across individuals, there exist geometrical ambiguities in the registration
process that an intensity measure alone is unable to solve. This problem
can be tackled using anatomical knowledge. First, we automatically seg-
ment and label the whole set of the cortical sulci, with a non-parametric
approach that enables the capture of their highly variable shape and
topology. Then, we develop a registration energy that merges intensity
and feature point matching. Its minimization leads to a linear combina-
tion of a dense smooth vector field and radial basis functions. We use
and process differently the bottom line of the sulci from its upper bor-
der, whose localization is even more variable across individuals. We show
that the additional sulcal energy improves the registration of the cortical
sulci, while still keeping the transformation smooth and one-to-one.

1 Introduction

While the goal of monosubject registration is somewhat clear and corresponds
intuitively to the retrieval of motion, multisubject brain registration is an ill-
posed problem because the topology of the brain, and especially the cortex, varies
strongly from one individual to another. Geometrically, there is an ambiguity on
which feature should be matched to a given feature. Therefore, intensity-based
registration algorithms are expected to fail at least on some pathological cases.

These geometrical ambiguities can be partially resolved when using higher-
level, anatomical knowledge. Indeed, the sulci of the cortex can be labelled, and
for a number of labels (e.g. the central sulcus) we know that the associated sulcus
has roughly the same position and topology for all brains, and are therefore
landmarks that should be registered in any cases. Collins [3] extracts 2 x 16 (16
for each hemisphere) parametric sulcal ribbons, and adds a chamfer matching
step in his intensity registration algorithm. Hellier [4] extracts 2 x 6 parametric
sulcal ribbons, and adds the distance between homologous control points of these
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active surfaces to his registration energy, which underlies a strong assumption
about the segmentation. Vaillant [13] inflates each cortex into a sphere, and
then matches both spheres using the trace of a few sulci on the spheres as
a constraint. Thompson [12] segments the cortex using balloon surfaces and
2 x 7 interactively outlined sulcal ribbons which are then matched together
with the cortical surface. Chui [2] semi-automatically extracts 2 x 5 sulci of both
hemispheres before matching them with a piecewise affine robust point-matching
algorithm.

While the role of some major sulci as anatomical and even functional land-
marks can be admitted [I4], [I5], some research still has to be done on the role of
other minor sulci. Moreover, even the reliable manual or automatic identification
of standard sulci for any brain is still an open issue, because of the variability of
sulcus interruptions.

In this article, we present a new non-rigid matching algorithm using both
intensity and sulcus matching. The whole set of the cortical sulci is first auto-
matically extracted with a non-parametric approach, which enables the capture
of the complex and variable topology of the sulci. They are then automatically la-
belled by a neural network using a set of 45 labels per hemisphere. We construct
a registration energy made up of an intensity similarity measure, a geometric
distance between sulcal points of the same label, and a regularization energy.
The minimization of this energy leads to a transformation that is a combination
of a dense smooth vector field and radial basis functions. We show that the in-
troduction of the sulcal energy helps to better match the sulci, especially when
the initial affine registration cannot match them well in the first place: this may
happens because of the variability of the topology and the position of the sulci
across individuals. Furthermore, we show that this improvement of matching
does not deteriorate the smoothness and the bijectivity of the transformation.

2 Methodology

Intensity-based non-rigid registration algorithms have proven to be a fast and
accurate way to achieve registration of volumetric images, at least in the case
where the organs to be registered have approximately the same geometry. Our
intensity-based algorithm uses the following generic registration energy:

E(C,T) = Esim(I,J,C) + 0||C = T||> + 0 AEyey (T) (1)

where I and J are two images to register, C' and T are non-parametric trans-
formations (C' pairs homologous points according to the similarity measure, T
is the smooth estimate of the non-rigid transformation), Eg, is an intensity
similarity energy and E,.;, a regularization energy or physical model. The at-
tractive behavior and properties of this form of registration energy is extensively
discussed in [IJ.

In the case of the registration of two different brains, the intensity constraint
is not sufficient anymore, especially if we are interested in the cortex, because
there is an ambiguity on which sulci should be matched to a given sulcus. These
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anatomical decisions are far beyond the capacity of an intensity similarity mea-
sure.

To resolve these ambiguities, we introduce geometric features in the images
and mix geometric and intensity matching. The geometric features are labelled
segmentations of the bottom and border lines of sulci, which contain a strong
anatomical a priori knowledge.

2.1 Sulci Extraction

The sulci are first automatically extracted from an MRI. The main steps of the
process segmenting the sulci are [§]: @ Non-uniform bias correction; @ Segmen-
tation of grey matter /CSF; ® Homotopic skeletonization; ® Splitting into simple
surfaces.

These surfaces are then automatically labelled with the algorithm of Riviere
[10], using a set of 90 labels. This algorithm uses a neural network trained on a
manually-labelled set. The informations used by the neural network to label a
sulcus is both intrinsic (size, depth, localization, etc. of the sulcus) and relational
(number of neighbors, minimal distance, etc. with neighboring sulci).

The computed error rate of the algorithm is about 24%. However, errors are
partly due to an actual ambiguity of the labelization on some areas of the cortex,
and to errors of the manual labelization done by the expert to build the training
data set. Sometimes, the result found by the neural network actually seems more
coherent than the labels found manually by the expert.

From these surfaces, we then extract two one-dimensional features (fig. [I),
defined from discrete topology [6]:

— The sulcal bottom, which is the edge of the sulcus deep in the brain;
— The sulcal border, which is the outside edge of the sulcus and correspond to
its junction with the hull of the brain.

Note that because we use non-parametric sulci, and also because several cortical
folds may have the same label, a sulcus may have a very complex topology.

The use of the sulcal bottom lines as a geometrical feature for registration is
driven by anatomical and computational considerations.

On an anatomical point of view, a theory has risen that the sulcal bottom
lines are more stable anatomical landmarks than the sulci themselves. These
lines, indeed, correspond to the shallow creases that appear on the foetal brain
during the beginning of the cortical folding process. These lines are very stable
across individuals because they delimit the main functional areas of the human
brain [15, [@]. The rest of the sulci, however, is more difficult to match across
individuals, because the sulcus border localization on the cortical surface de-
pends on the local extent of the folding process, which varies with the subjects.
This interpretation also explains the presence or absence of secondary folds or
branches around the main sulcus.

On a computational point of view, the use of one-dimensional features dras-
tically reduces the number of points to be processed and hence improves the
speed of the algorithm.



Multisubject Non-rigid Registration of Brain MRI 737

The use of the sulcal borders helps the intensity-based algorithm to match
the entire sulcus, not only its bottom. However, to follow the anatomical un-
derstanding of the folding process mentioned above, we want them to help the
registration only if they are distant. Hence, the matching of sulcal borders is
looser than for sulcal bottoms.

Given a label ¢, 1 < ¢ < 90, we note S¢(I) the set of points of the image
I classified as belonging to the sulcus ¢. We note Sj (I) the subset of points
of S¢(I) making up its sulcal bottom, and Sg (I) those belonging to the sulcal
border. Finally, we note S(I) = J, Sel (I)uS)(I).

2.2 Registration Using Intensity and Geometric Features

Given two brain MR images I and J, we do not want to perfectly register the
sulci Sj (I) and Sé(J) (or sulcal borders Sg (I) and SJ(J)) because:

1. Sé (I) and Sel(J) may have very different topologies, e.g. the number of
creases or branches. Sometimes, the same sulcus can even be made of one
part in one brain, and two parts in the other: an exact matching would
require the creation of an additional fold, which implies discontinuities in the
deformation field on the cortex. Therefore, we want to get them as close as
possible without actually totally map one onto the other. A partial matching
is often the intuitive solution, as if one of the sulcus has grown further than
the other.

2. The neighbors of a given sulci are not always the same for all brains. Match-
ing two sulci that do not have the same neighboring relation in both brains
would also lead to discontinuities in the deformation field on the cortex. Look
at labelled brains in [I0] for an illustration of these two first points.

3. On top of that, there exits a problem of robustness due to the errors in
the automatic labelization. Therefore Sé(] ) might not be the corresponding

feature of Sé (I).

To integrate sulcus matching in our algorithm, we generalize the registration
energy (Il) by introducing a second set of correspondences Cy between points
of both images located on a landmark with the same label ¢, i.e. Vx € Sé (1),

Cy(x) € Sé(J) (and similarly for x € SJ (I)). We now set
E(Cy,C,T) = Esim(I, J,C1) + 0]|C1 = T|* + 04]|C2 = T|* + 0AEyeg (T) (2)

where in the following Eg;m (I, J,C1) = [(I — J o C1)?, Erey(T) is a quadratic
energy whose impulse response is a Gaussian, and v is a trade-off coefficient
between intensity matching and sulcal matching. The minimization of this energy
with respect to Cy, Co and T leads to a 3-step algorithm:

1. Minimize Egm(I,J,C1) +0.]|Ch — T||*> w.r. to C4, i.e. find dense correspon-
dences C7 between voxels according to the intensity information.

2. Minimize [|Cy — T||* w.r. to Cy, i.e. find corresponding points Cy between
sulci with the same label ¢ closest to T" with a closest point algorithm.
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3. Fit T to C; and Cy by minimizing [|C1 — T'||* +7.[|C2 — T||? + X\.Erey(T)
w.r. to 7. T' is thus of the form

T(x) = aG *x C1(x) + inES(I)aiG(X - X;)

where G is the impulse response of the filter associated to F,..4, in our case
a Gaussian, o € R and o; € IR?, Vi. (See [] for technical details).
4. Go back to the first step until convergence.

We will however slightly modify this third step, as it would need the fitting of
radial basis functions (RBF) at typically 2000 points at each iteration, which
implies the inversion of a consequently huge matrix, and also because the errors
of labelization and the topology variability, as previously discussed, imply the use
of arobust fitting. A sulcal point x; € Sjl’” (I) being associated to another sulcal
point Cs(x;) € Sé{i’T}(J), we associate to x; the RBF o;[Ca(x;)—T'(x;)|G(x—x%;),
where a; € IR a multiplicative coefficient which is equal to

— 1 if x; belongs to a small set of 30 sulci for which we have a confident
labelization for all brains,

— exp(—||Ca(x;)—T'(x;)||?/B) otherwise, 3 being a cut-off distance above which
we decide that two points cannot be homologous, which may help both for
labelization and topological problems.

We furthermore multiply a; by 1 — exp(—||C2(xi) — T(x:)||?/B2), B2 < B, if
x; belongs to a sulcal border, because the localization of these features on the
cortical surface are not as accurate as for the sulcal bottom.

The final estimate transformation is then a weighted average of the fitting of
intensity and feature points:

Zi OLZ'.[CQ(XZ') — T(Xl)]G(X - Xi)2
2 Glx —xi)

where A is a trade-off coefficient between intensity and feature matching. All
the parameters A, 3, B2 are chosen a priori. Before registration, we applied an
anisotropic diffusion to the images, and carefully removed their bias [7] to use
the SSD. The whole registration process is also set in a multiresolution scheme
which helps preventing from local minima.

T(x) = AG*C1(x) + (1 = A).

3 Experiments

We have run our multisubject registration on a set of 5 labelled brains. One
of the brains have been arbitrarily chosen as the reference brain, and we have
registered the other brains on it, using a robust affine registration [I1] (also used
as an initial alignment for non-rigid registration), and our non-rigid algorithm
without and with the sulcus matching.

The results of the registrations, for a manually-chosen set of registration pa-
rameters, is given in fig. 21 The intensity-based method is able to match the sulci
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Fig.1. Three segmented sulci S in green, and their associated sulcal bottom S*
in red and sulcal border ST in blue.

when their topology is simple (i.e. mostly linear) and the initial affine registration
is good. For example, the central sulci in red are generally matched; however,
for one the brain, the central sulcus is relatively backwards, and a part of the
precentral sulcus initially matches the central sulcus of the reference brain after

Fig.2. Position of the sulci after affine registration (left column), and after
non-rigid registration without (middle column) and with (right column) sulcus
matching. The sulcus matching helps to pair homologous sulci when they are
mitially far apart, and also improves the precision of the matching especially
when the topology of the sulci is complex.
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affine registration: in this case the precentral sulcus stays at its original position
if we register them using intensities only, but they are correctly registered using
the additional sulcus matching. Sulcus matching also helps to more efficiently
register sulci with complex topology such as the precentral sulcus, and generally
improves the accuracy of the matching of all sulci.

Authors working on multisubject registration often omit to present the trans-
formation itself. However, it is very important to make sure that the registration
is smooth and bijective, especially in multisubject registration where the topol-
ogy preservation is more than ever in competition with the matching of sulci.
Presenting the position of the registered sulci is only one aspect of the non-
rigid registration; the other is the smoothness of the transformation, and it is
always possible to have a better sulci registration by deteriorating the smooth-
ness and the topology. Here, the sulcal matching is done without deteriorating
the smoothness and the bijectivity of the transformation: the Jacobian of the
transformation is always positive, except for some points outside of the brain
where there are boundary effects or occlusion problems due to the initial affine
registration. Fig. [ gives an idea of the quality of the estimated transformation
for the four multisubject registrations.

gt

e

A

Fig. 3. Estimate of the transformation at an arbitrary axial slice, for the 4 mul-
tisubject brain registration. Despite the additional sulcus matching, the recovered
transformation is still smooth and one-to-one.

4 Conclusion

In this work, we presented a registration energy that merges intensity and point
feature registration. Its minimization leads to a linear combination of a dense
smooth vector field and radial basis functions. We have adapted this energy
to the robust matching of sulcal bottoms and borders of the brain, which are
automatically extracted in a non parametric way and labelled, for all the creases
of the cortex. We show that this additional information helps the algorithm
to register homologous sulci while keeping the estimated transformation very
smooth and one-to-one.

An extension of this work will consist in using a more detailed labelling of
the sulcal patterns using the sulcal root model [9,[5]. Sulcal roots correspond to
elementary creases always appearing on the foetal brain as only one connected
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component. Several studies tend to prove that sulcal roots may be identified
in adult brains using variations of depth or curvature properties along sulcus
bottoms. The simpler topology of these roots relative to standard sulci could
allow us to use more stringent sulcal constraints in order to achieve a perfect
matching of the folding patterns.

Another application of this work is the study of secondary folds after regis-

tration in order to discover stable patterns across individuals that could improve
the description of the human cortex.
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