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Abstract. In the last years we have witnessed an impressive advance
in the efficiency of boolean solving techniques, which has brought large
previously intractable problems at the reach of state-of-the-art solvers.
Unfortunately, simple boolean expressions are not expressive enough for
representing many real-world problems, which require handling also in-
teger or real values and operators. On the other hand, mathematical
solvers, like computer-algebra systems or constraint solvers, cannot han-
dle efficiently problems involving heavy boolean search, or do not handle
them at all. In this paper we present the foundations and the basic al-
gorithms for a new class of procedures for solving boolean combinations
of mathematical propositions, which combine boolean and mathemati-
cal solvers, and we highlight the main requirements that boolean and
mathematical solvers must fulfill in order to achieve the maximum ben-
efits from their integration. Finally we show how existing systems are
captured by our framework.

1 Motivation and goals

In the last years we have witnessed an impressive advance in the efficiency of
boolean solving techniques (SAT), which has brought large previously intractable
problems at the reach of state-of-the-art solvers. ! As a consequence, some
hard real-world problems have been successfully solved by encoding them into
SAT. Propositional planning [KMS96] and boolean model-checking [BCCZ99]
are among the best achievements.

* This work is sponsored by the CALCULEMUS! IHP-RTN EC project, contract code
HPRN-CT-2000-00102, and has thus benefited of the financial contribution of the
Commission through the IHP programme.

! SAT procedures are commonly called solvers in the SAT community, although the
distinction between solving, proving and computing services may suggest to call them
provers.



Unfortunately, simple boolean expressions are not expressive enough for rep-
resenting many real-world problems. For example, problem domains like tem-
poral reasoning, resource planning, verification of systems with numerical data
or of timed systems, require handling also constraints on integer or real quanti-
ties (see, e.g., [ACG99,WW99,CABN97,MLAHO1]). Moreover, some problem do-
mains like model checking often require an explicit representation of integers and
arithmetic operators, which cannot be represented efficiently by simple boolean
expressions (see, e.g., [CABN97,MLAHO1]). On the other hand, mathematical
solvers, like computer-algebra systems or constraint solvers, cannot handle ef-
ficiently problems involving heavy boolean search, or do not handle them at
all.

In 1996 we have proposed a new general approach to build domain-specific
decision procedures on top of SAT solvers [GS96,GS00]. The basic idea was
to decompose the search into two orthogonal components, one purely proposi-
tional component and one “boolean-free” domain-specific component and to use
a (modified) Davis Putnam Longemann Loveland (DPLL) SAT solver [DLL62]
for the former and a pure domain-specific procedure for the latter. So far the
SAT based approach proved very effective in various problem domains like, e.g.,
modal and description logics [GS00], temporal reasoning [ACG99], resource plan-
ning [WW99).

In this paper we present the foundations and the basic algorithms for a new
class of procedures for solving boolean combinations of mathematical proposi-
tions, which integrate SAT and mathematical solvers, and we highlight the main
requirement SAT and mathematical solvers must fulfill in order to achieve the
maximum benefits from their integration. The ultimate goal is to develop solvers
able to handle complex problems like those hinted above.

The paper is structured as follows. In Section 2 we describe formally the
problem we are addressing. In Section 3 we present the logic framework on
which the procedures are based. In Section 4 we present a generalized search
procedure which combine boolean and mathematical solvers and introduce some
efficiency issues. In Section 5 we highlight the main requirements that boolean
and mathematical solvers must fulfill in order to achieve the maximum benefits
from their integration. In Section 6 we briefly describe some existing systems
which are captured by our framework,and our own implemented procedure.

For lack of space, in this paper we omit the proofs of all the theoretical results
presented, which can be found in [Seb01].

2 The problem

We address the problem of checking the satisfiability of boolean combinations of
primitive and mathematical propositions. Let D be the domain of either integer
numbers Z or real numbers R, with the respective set OPp of arithmetical op-
erators {+, —, -, /,mod} or {+, —, -, /} respectively. Let { L, T} denote the false
and true boolean values. Given the standard boolean connectives {-, A} and
math operators {=,#,>,<,>, <}, let A = {Ay, As,...} be a set of primitive



propositions, let C = {c1,¢2,...} and V = {v1,va,...} respectively be a set of
numerical constants in D and variables over the D.

We call Math-terms the mathematical expressions built up from constants,
variables and arithmetical operators over D:

— a constant ¢; € C is a Math-term;

a variable v; € V is a Math-term;

— if t; is a Math-term, then —¢; is a Math-term;

— if ¢4, t2 are Math-terms, then (t; ® t2) is a Math-term, ® € OPp.

We call Math-formulas the mathematical formulas built on primitive propo-
sitions, Math-terms, operators and boolean connectives:

— a primitive proposition A; € A is a Math-formula;

— if ¢1, t2 are Math-terms, then (¢; < t2) is a Math-formula, < € {=,#,>,<
>, <};

— if ¢y is a Math-formula, then —p; is a Math-formula;

— if @1, 2 are Math-formulas, then (1 A ¢9) is a Math-formula.

For instance, A; A ((v1 +5.0) < (2.0-v3)) and A2 A =(((2 - v1) mod v2) > 5) are
Math-formulas. 2

Notationally, we use the lower case letters ¢,t¢;,... to denote Math-terms,
and the Greek letters «, 3, p,% to denote Math-formulas. We use the standard
abbreviations, that is: “p1 V " for “=(=p1 A —pa)”, “p1 — pa” for “=(p1 A
—p2)”, “p1 > 27 for “=(p1 Ampa) A= (waA—ipr)”, “T” for any valid formula, and
“1” for “~T”. When this does not cause ambiguities, we use the associativity
and precedence rules of arithmetical operators to simplify the appearance of
Math-terms; e.g, we write “(c1(va — v1) — c1vs + c3v4)” instead of “(((c1 - (va —
v1)) — (c1 - v3)) + (c3 - v4))”.

We call interpretation a map Z which assigns D values and boolean values to
Math-terms and Math-formulas respectively and preserves constants and arith-
metical operators:3

(4;) € {T, L}, for every A; € A;
— Z(¢;) = ¢, for every ¢; € C;
(
(

2 The assumption that the domain is the whole Z or R is not restrictive, as we can re-
strict the domain of any variable v; at will by adding to the formula some constraints
like, e.g., (v1 # 0.0), (v1 < 5.0), etc.

3 Here we make a little abuse of notation with the constants and the operators in
OPp. In fact, e.g., we denote by the same symbol “+” both the language symbol in
Ip(t1 + t2) and the arithmetic operator in (Zp(t1) + Zp(t2)). The same discourse
holds for the constants ¢; € C and also for the operators {=, #, >,<,>,<}.



The binary relation = between a interpretation Z and a Math-formula ¢, written
“T = ¢” (“T satisfies ¢” or “I satisfies ¢”) is defined as follows:

IIZAZ, A, e A <:>I(Az):—|—,

7z IZ (tl > t2);l><1 € {:5#5>5<5Z;S} <:}-,Z(tl) [><II(t2),

TE - =T

I E (g1 Ap2) —TEF¢and T = po.

We say that a Math-formula ¢ is satisfiable if and only if there exists an interpre-
tation Z such that Z |= ¢. E.g., if D = R, then A1 — ((v1+2v2) < 4.5) is satisfied
by an interpretation Z such that Z(A;) = T, Z(v;) = 1.1, and Z(v2) = 0.6. For
every @1 and @2, we say that g1 = @9 if and only if 7 |= @2 for every Z such
that Z |= 1. We also say that = ¢ (¢ is valid) if and only if Z |= ¢ for every 7.
It is easy to verify that o1 |= @2 if and only if | ¢1 — @2, and that = ¢ if and
only if —p is unsatisfiable.

3 The formal framework

3.1 Basic definitions and results

Definition 1. We call atom any Math-formula that cannot be decomposed propo-
sitionally, that is, any Math-formula whose main connective is not a boolean
operator. A literal is either an atom (a positive literal) or its negation (a
negative literal).

Examples of literals are, A1, =4y, (v1 + 5.0 < 2.0v3), =((2v1 mod v2) > 5). If
[ is a negative literal ), then by “~l” we conventionally mean ¢ rather than
——). We denote by Atoms(y) the set of atoms in ¢.

Definition 2. We call o total truth assignment p for a Math-formula ¢ a
set

l’l’={a17'“’aNJ_‘Bl""7_‘IBM’A17‘"’ARJ_‘AR+17"'7_|AS}7 (1)

such that every atom in Atoms(p) occurs as either a positive or a negative literal
in p. A partial truth assignment p for ¢ is a subset of a total truth assignment
for w. If ua C p1, then we say that pu1 extends pe and that ps subsumes py.

A total truth assignment p like (1) is interpreted as a truth value assignment to
all the atoms of ¢: a; € p means that o; is assigned to T, —f; € u means that j;
is assigned to L. Syntactically identical instances of the same atom are always
assigned identical truth values; syntactically different atoms, e.g., (t1 > t2) and
(t2 < t1), are treated differently and may thus be assigned different truth values.

Notationally, we use the Greek letters u,n to represent truth assignments.
We often write a truth assignment p as the conjunction of its elements. To this
extent, we say that u is satisfiable if the conjunction of its elements is satisfiable.



Definition 3. We say that a total truth assignment p for ¢ propositionally
satisfies ¢, written p =, @, if and only if it makes ¢ evaluate to T, that is, for
all sub-formulas p1,pa of p:

1 Ep ¢1, o1 € Atoms(p) <= ¢1 € 5
1 Ep 1 = pp s
B Ep p1 A2 = pFEp 1 and p =y o

We say that a partial truth assignment p propositionally satisfies ¢ if and
only if all the total truth assignments for ¢ which extend p propositionally satisfy

®.

From now on, if not specified, when dealing with propositional satisfiability we
do not distinguish between total and partial assignments.

We say that ¢ is propositionally satisfiable if and only if there exist an as-
signment p such that p }=p ¢. Intuitively, if we consider a Math-formula ¢ as
a propositional formula in its atoms, then |=, is the standard satisfiability in
propositional logic. Thus, for every ¢; and g2, we say that ¢; =, @2 if and
only if u |=, @2 for every p such that p |=, ¢1. We also say that |=, ¢ (¢ is
propositionally valid) if and only if p |=, ¢ for every assignment p for . It is
easy to verify that 1 |=p @2 if and only if =, 1 — @2, and that =, ¢ if and
only if - is propositionally unsatisfiable.

Notice that =, is stronger than |=, that is, if ¢1 |=p @2, then p1 = @2, but
not vice versa. E.g., (v1 < v2) A (v2 < v3) = (v1 < w3), but (v1 < v3) A (v2 <
v3) Fp (v1 < 3).

Ezxample 1. Consider the following math-formula ¢:

Y= {—|(2U2 — vz > 2) VAl} A
{—|_AzV (21]1 — 4oy > 3)} A
{(31)1 - 2’1)2 S 3) VAQ} A
{-(2uz +vs >5) V-(3vuy —u3 <6) V-A41} A
{A1 \Y (3'111 - 2'112 S 3)} A
{(’1)1 — Vs S 1) V (’1}5 =95 —31)4) V"Al} A
{Al \% ('1)3 = 3vs + 4) \% AQ}

The truth assignment given by the underlined literals above is:
B = {—|(2U2—U3 > 2), —|A2, (31)1—21]2 S 3), ('111—’[)5 S 1),"(3?}1—’03 S 6), (U3 = 3U5+4)}.

Notice that the two occurrences of (3v; — 2vs < 3) in rows 3 and 5 of ¢ are
both assigned T. u is an assignment which propositionally satisfies ¢, as it sets
to true one literal of every disjunction in . Notice that u is not satisfiable, as
both the following sub-assignments of p

{(31)1 — 2v9 < 3),—|(2U2 — V3 > 2),“(3’1]1 —v3 < 6)} (
{(v1 —v5 <1),(v3 =3v5 +4),(3v1 —v3 <6)} (3

[\
o —

<&

do not have any satisfying interpretation.



Definition 4. We say that a collection M = {p1,...,un} of (possibly partial)
assignments propositionally satisfying ¢ is complete if and only if

Foe o Vi ()

where each assignment p; is written as a conjunction of its elements.

M is complete in the sense that, for every total assignment 7 such that n |=, ¢,
there exists p; € M such that p; C n. Therefore M is a compact representation
of the whole set of total assignments propositionally satisfying . Notice however
that ||M]| is worst-case exponential in the size of ¢, though typically much
smaller than the set of all total assignments satisfying .

Definition 5. We say that a complete collection M = {u1,...,us} of assign-
ments propositionally satisfying ¢ is non-redundant if for every p; € M,
M\ {p;} is no more complete, it is redundant otherwise. M is strongly
non-redundant if, for every p;, p; € M, (11 A po) is propositionally unsatisfi-
able.

It is easy to verify that, if M is redundant, then u; C p; for some 4, j, and that,
if M is strongly non-redundant, then it is non-redundant too, but the vice versa
does not hold.

Ezample 2. Let p:= (aVEVy)A(aV BV ), a, f and v being atoms. Then

L {{aa B77}7 {Oé,,B, —"7}7 {aa _|/87’Y}7 {a7 —B, —"Y}a {_'a7577}7 {_1047/87 _"7}} is the

set of all total assignments propositionally satisfying ¢;

2. {{OL}, {Ot, ﬁ}: {Oé, _'7}7 {OL, /3}7 {ﬂ}a {ﬁa _"7}7 {Oé, 7}7 {187 ’7}} is complete but re-
dundant;

3. {{a},{B}} is complete, non redundant but not strongly non-redundant;

4. {{a},{~a,B}} is complete and strongly non-redundant. <&

Theorem 1. Let ¢ be a Math-formula and let M = {p, ..., un} be a complete
collection of truth assignments propositionally satisfying . Then ¢ is satisfiable
if and only if u; is satisfiable for some p; € M.

3.2 Decidability and complexity

Having a Math-formula ¢, it is always possible to find a complete collection of
satisfying assignments for ¢ (see later). Thus from Theorem 1 we have trivially
the following fact.

Proposition 1. The satisfiability problem for a Math-formula over atoms of a
giwen class is decidable if and only if the satisfiability of sets of literals of the
same class is decidable.



For instance, the satisfiability of a set of linear constraints on R or on Z, or a
set of non-linear constraints on R is decidable, whilst a set of non-linear (poly-
nomial) constraints on Z is not decidable (see, e.g., [RV01]). Consequently, the
satisfiability of Math-formulas over linear constraints on R or on Z, or over non-
linear constraints on R is decidable, whilst the satisfiability of Math-formulas
over non-linear constraints over Z is undecidable.

For the decidable cases, as standard boolean formulas are a strict subcase
of Math-formulas, it follows trivially that deciding the satisfiability of Math-
formulas is “at least as hard” as boolean satisfiability.

Proposition 2. The problem of deciding the satisfiability of a Math-formula
is NP-hard.

Thus, deciding satisfiability is computationally very expensive. The complexity
upper bound may depend on the kind of mathematical problems we are dealing.
For instance, if we are dealing with arithmetical expressions over bounded inte-
gers, then for every Z we can verify Z |= ¢ in a polynomial amount of time, and
thus the problem is also NP-complete.

4 A generalized search procedure

Theorem 1 allows us to split the notion of satisfiability of a Math-formula ¢ into
two orthogonal components:

— a purely boolean component, consisting of the existence of a propositional
model for ¢;

— a purely mathematical component, consisting of the existence of an inter-
pretation for a set of atomic (possibly negated) mathematical propositions.

These two aspects are handled, respectively, by a truth assignment enumerator
and by a mathematical solver.

Definition 6. We call o truth assignment enumerator a total function As-
SIGN_ENUMERATOR which takes as input a Math-formula ¢ and returns a com-
plete collection {p1,...,pn} of assignments satisfying .

Notice the difference between a truth assignment enumerator and a standard
boolean solver: a boolean solver has to find only one satisfying assignment —or
to decide there is none— while an enumerator has to find a complete collection
of satisfying assignments. (We will show later how some boolean solvers can be
modified to be used as enumerators.)

We say that ASSIGN_ENUMERATOR is

— strongly non-redundantif ASSIGN_ENUMERATOR() is strongly non-redundant,
for every o,

— non-redundant if ASSIGN_ENUMERATOR(¢) is non-redundant for every ¢,

— redundant otherwise.



boolean MATH-SAT (formula ¢, assignment & p, interpretation & Z)

do

i := Next(ASSIGN_ENUMERATOR(¢)) /* next in {p1, ..., un} */

if (u # Null)

Z :=MATHSOLVER(u);

while ((Z = Null) and (p # Null))
if (Z # Null)
then return True; /* a D-satisfiable assignment found */
else return False; /* no D-satisfiable assignment found */

Fig. 1. Schema of the generalized search procedure for D-satisfiability.

Definition 7. We call a mathematical solver a total function MATHSOLVER
which takes as input a set of (possibly negated) atomic Math-formulas p and
returns an interpretation satisfying p, or Null if there is none.

The general schema of a search procedure for satisfiability is reported in
Figure 1. MATH-SAT takes as input a formula ¢ and (by reference) an initially
empty assignment p and an initially null interpretation Z. For every assignment g
in the collection {u1, .., ptn, } generated by ASSIGN_ENUMERATOR(p), MATH-SAT
invokes MATHSOLVER over u, which either returns a interpretation satisfying u,
or Null if there is none. This is done until either one satisfiable assignment is
found, or no more assignments are available in {1, ..., un}. In the former case
 is satisfiable, in the later case it is not.

MATH-SAT performs at most ||[M)|| loops. Thus, if every call to MATH-
SOLVER terminates, then MATH-SAT terminates. Moreover, it follows from The-
orem 1 that MATH-SAT is correct and complete if MATHSOLVER is correct and
complete. Notice that, it is not necessary to check the whole set of total truth
assignments satisfying ¢, rather it is sufficient to check an arbitrary complete col-
lection M of partial assignments propositionally satisfying ¢, which is typically
much smaller.

It is very important to notice that the search procedure schema of Figure 1 is
completely independent on the kind of mathematical domain we are addressing,
once we have a mathematical solver for it. This means that the expressivity of
MATH-SAT, that is, the kind of math-formulas MATH-SAT can handle, depends
only on the kind of sets of mathematical atomic propositions MATHSOLVER can
handle.

4.1 Suitable ASSIGN_ENUMERATORS

The following are the most significant boolean reasoning techniques that we can
adapt to be used as assignment enumerators.
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Fig. 2. OBDD, Tableau search graph and DPLL search graph for the formula (aV 8V
NA(aVBV ).

DNF. The simplest technique we can use as an enumerator is the Disjunctive
Normal Form (DNF) conversion. A propositional formula ¢ can be converted
into a formula DN F(y) by (i) recursively applying DeMorgan’s rewriting rules
to ¢ until the result is a disjunction of conjunction of literals, and (ii) removing
all duplicated and subsumed disjuncts. The resulting formula is normal, in the
sense that DN F(yp) is propositionally equivalent to ¢, and that propositionally
equivalent formulas generate the same DNF modulo reordering.

By Definition 4, we can see (the set of disjuncts of) DNF(yp) as a com-
plete and non-redundant —but not strongly non-redundant— collection of as-
signments propositionally satisfying ¢. For instance, in Example 2, the set of
assignments at point 2. and 3. are respectively the results of step (i) and (ii)
above.

OBDD . A more effective normal form for representing a boolean formula if
given by the Ordered Binary Decision Diagrams (OBDDs) [Bry86], which are
extensively used in hardware verification and model checking. Given a total
ordering w1, ...,v, on the atoms of ¢, the OBDD representing ¢ (OBDD(p))
is a directed acyclic graph such that (i) each node is either one of the two
terminal nodes T, F', or an internal node labeled by an atom v of ¢, with two
outcoming edges T'(v) (“v is true”) and F'(v) (“v is false”), (ii) each arc v; —
v; is such that v; < v; in the total order. If a node n labeled with v is the
root of OBDD(¢) and my, na are the two son nodes of n through the edges
T(v) and F(v) respectively, then nq, ny are the roots of OBDD($[v = T]) and
OBDD(¢[v = L]) respectively. A path from the root of OBDD(p) to T [resp.
F) is a propositional model [resp. counter-model] of ¢, and the disjunction of
such paths is propositionally equivalent to ¢ [resp. —¢].

Thus, we can see OBDD(yp) as a complete collection of assignments propo-
sitionally satisfying ¢. As every pair of paths differ for the truth value of at
least one variable, OBDD(yp) is also strongly non-redundant. For instance, in
Figure 2 (left) the OBDD of the formula in Example 2 is represented. The paths
to T are those given by the set of assignments at point 4. of Example 2.



Semantic tableaux. A standard boolean solving technique is that of semantic
tableaux [Smu68]. Given an input formula ¢, in each branch of the search tree
the set {¢} is decomposed into a set of literals p by the recursive application of
the rules:

' U{er, ..., on} pU{ei} p' U {pn}
WO ot WOV i} V)

plus analogous rules for (=), (<), (=A), (=V), (= =), (= «). The main steps
are:

— (closed branch) if p contains both ¢; and ¢; for some subformula ¢; of ¢,
then p is said to be closed and cannot be decomposed any further;

— (solution branch) if u contains only literals, then it is an assignment such
that p |=p ¢;

— (A-rule) if p contains a conjunction, then the latter is unrolled into the set
of its conjuncts;

— (V-rule) if p contains a disjunction, then the search branches on one of the
disjuncts.

The search tree resulting from the decomposition is such that all its solu-
tion branches are assignments in a collection T'ableau(y), whose disjunction is
propositionally equivalent to ¢. Thus Tableau(ip) is complete, but it may be re-
dundant. For instance, in Figure 2 (center) the search tree of a semantic tableau
applied on the formula in Example 2 is represented. The solutions branches give
rise to the redundant collection of assignments at point 2. of Example 2.

DPLL. The most commonly used boolean solving procedure is DPLL [DLL62].
Given ¢ in input, DPLL tries to build recursively one assignment pu satisfying
p, at each step adding a new literal to p and simplifying ¢, according to the
following steps:

— (base) If ¢ = T, then p propositionally satisfies the original formula, so that
w is returned;

— (backtrack) if ¢ = L, u propositionally falsifies the original formula, so that
DPLL backtracks;

— (unit propagation) if a literal [ occurs in ¢ as a unit clause, then DPLL is
invoked recursively on ¢;—1 and pU{l}, ¢;=T being the result of substituting
T for [ in ¢ and simplifying;

— (split) otherwise, a literal [ is selected, and DPLL is invoked recursively on
wi=T and pU {I}. If this call succeeds, then the result is returned, otherwise
DPLL is invoked recursively on ¢;=; and pU {-l}.

Standard DPLL can be adapted to work as a boolean enumerator by simply
modifying in the base case “u is returned” with “u is added to the collection,
and backtrack” [GS96,Seb01].

The resulting set of assignments DPLL(p) is complete and strongly non-
redundant [Seb01]. For instance, in Figure 2 (right) the search tree of DPLL



applied on the formula in Example 2 is represented. The non closed branches
give rise to the set of assignments at point 4. of Example 2.

Notice the difference between an OBDD and (the search tree of) DPLL: first,
the former is a direct acyclic graph whilst the second is a tree; second, in OBDDs
the order of branching variables if fixed a priori, while DPLL can choose each
time the best variable to split.

4.2 Non-suitable ASSIGN_.ENUMERATORS

It is very important to notice that, in general, not every boolean solver can be
adapted to work as a boolean enumerator. For instance, many implementations
of DPLL include also the following step between unit propagation and split:

— (pure literal) if an atom % occurs only positively [resp. negatively] in ¢,
then DPLL is invoked recursively on ¢y=1 and p U {9} [resp. ¢y=1 and

pU {9}
(we call this variant DPLL+PL). DPLL+PL is complete as a boolean solver,

but does not generate a complete collection of assignments, so that it cannot be
used as an enumerator.

Ezxample 3. If we used DPLL+PL as ASSIGN_ENUMERATOR in MATH-SAT and
gave in input the formula in Example 2, DPLL+PL might return the one-
element collection {{a}}, which is not complete. If a is (z? + 1 < 0) and 3 is
(y < z), z,y € R, then {a} is not satisfiable, so that MATH-SAT would return
unsatisfiable. On the other hand, the formula ¢ is satisfiable because, e.g., the
assignment {—a, 8} is satisfied by Z(z) = 1.0 and Z(y) = 0.0.

5 Requirements for AsSIGN_ENUMERATOR and MATHSOLVER

Apart from the efficiency of MATHSOLVER —which varies with the kind of prob-
lem addressed and with the technique adopted, and will not be discussed here—
and that of the SAT solver used —which does not necessarily imply its efficiency
as an enumerator— many other factors influence the efficiency of MATH-SAT.

5.1 Efficiency requirements for ASSIGN_ENUMERATOR

Polynomial vs. exponential space in ASSIGN_.ENUMERATOR. We would
rather MATH-SAT require polynomial space. As M can be exponentially big
with respect to the size of ¢, we would rather adopt a generate-check-and-drop
paradigm: at each step, generate the next assignment p; € M, check its sat-
isfiability, and then drop it —or drop the part of it which is not common to
the next assignment— before passing to the ¢ + 1-step. This means that As-
SIGN_ENUMERATOR must be able to generate the assignments one at a time.

To this extent, both DNF and OBDD are not suitable, as they force generat-
ing the whole assignment collection M one-shot. Instead, both semantic tableaux
and DPLL are a good choice, as their depth-first search strategy allows for gen-
erating and checking one assignment at a time.



Non-redundancy of ASSIGN_.ENUMERATOR. We want to reduce as much as
possible the number of assignments generated and checked. To do this, a key
issue is avoiding MATHSOLVER being invoked on an assignment which either is
identical to an already-checked one or extends one which has been already found
unsatisfiable. This is obtained by using a non-redundant enumerator. To this
extent, semantic tableaux are not a good choice.

Non-redundant enumerators avoid generating partial assignments whose un-
satisfiability is a propositional consequence of those already generated. If M is
strongly non-redundant, however, each total assignment 7 propositionally satis-
fying ¢ is represented by one and only one u; € M, and every u; € M represents
univocally 2/4toms(©)=lr;il total assignments. Thus strongly non-redundant enu-
merators also avoid generating partial assignments covering areas of the search
space which are covered by already-generated ones.

For enumerators that are not strongly non-redundant, there is a tradeoff
between redundancy and polynomial memory. In fact, when adopting a generate-
check-and-drop paradigm, the algorithm has no way to remember if it has already
checked a given assignment or not, unless it explicitly keeps track of it, which
requires up to exponential memory. Strong non-redundancy instead provides a
logical warrant that an already checked assignment will never be checked again.

5.2 Exploiting the interaction between ASSIGN_.ENUMERATOR and
MATHSOLVER

Intermediate assignment checking. If an assignment ' is unsatisfiable, then
all its extensions are unsatisfiable. Thus, when the unsatisfiability of y' is de-
tected during its recursive construction, this prevents checking the satisfiability
of all the up to 24toms(@)l=Ir'l truth assignments which extend p'. Thus, another
key issue for efficiency is the possibility of modifying ASSIGN_ENUMERATOR s0
that it can perform intermediate calls to MATHSOLVER and it can take advantage
of the (un)satisfiability information returned to prune the search space.

With semantic tableaux and DPLL, this can be easily obtained by intro-
ducing an intermediate test, immediately before the (V-rule) and the (split)
step respectively, in which MATHSOLVER is invoked on an intermediate assign-
ment g’ and, if it is inconsistent, the whole branch is cut [GS96,ABC*02]. With
OBDDs, it is possible to reduce an existing OBDD by traversing it depth-first
and redirecting to the F' node the paths representing inconsistent assignments
[CABN97]. However, this requires generating the non-reduced OBDD anyway.

Generating and handling conflict sets. Given an unsatisfiable assignment
u, we call a conflict set any unsatisfiable sub-assignment p' C p. (E.g., in Ex-
ample 1 (2) and (3) are conflict sets for the assignment u.) A key efficiency
issue for MATH-SAT is the capability of MATHSOLVER to return the conflict set
which has caused the inconsistency of an input assignment, and the capability
of ASSIGN_ENUMERATOR to use this information to prune search.



For instance, both Belman-Ford algorithm and Simplex LP procedures can
produce conflict sets [ABC*02,WW99]. Semantic tableaux and DPLL can be en-
hanced by a technique called mathematical backjumping [HPS98, WW99,ABC*+02]:
when MATHSOLVER(u) returns a conflict set 7, ASSIGN_ENUMERATOR can jump
back in its search to the deepest branching point in which a literal [ € 5 is as-
signed a truth value, pruning the search tree below. DPLL can be enhanced also
with learning [WW99,ABC*02]: the negation of the conflict set —n is added in
conjunction to the input formula, so that DPLL will never again generate an
assignment containing the conflict set 7.

Generating and handling derived assignments. Another efficiency issue
for MATH-SAT is the capability of MATHSOLVER to produce an extra assign-
ment 7 derived deterministically from a satisfiable input assignment u, and the
capability of ASSIGN_ENUMERATOR to use this information to narrow the search.

For instance, in the procedure presented in [ABC*02,ACKS02], MATHSOLVER
computes equivalence classes of real variables and performs substitutions which
can produce further assignments. E.g., if (v1 = v2), (v2 = v3) € pu, (v1 —v3 >
2) ¢ p and p is satisfiable, then MATHSOLVER(y) finds that v; and vz belong
to the same equivalence class and returns an extra assignment 7 containing
—(v1 — v3 > 2), which is unit-propagated away by DPLL.

Incrementality of MATHSOLVER. Another efficiency issue of MATHSOLVER is
that of being incremental, so that to avoid restarting computation from scratch
whenever it is given in input an assignment p' such that g’ O p and p has already
proved satisfiable. (This happens, e.g., at the intermediate assignments checking
steps.) Thus, MATHSOLVER should “remember” the status of the computation
from one call to the other, whilst ASSIGN_.ENUMERATOR should be able to keep
track of the computation status of MATHSOLVER.

For instance, it is possible to modify a Simplex LP procedure so that to
make it incremental, and to make DPLL call it incrementally after every unit
propagation [WW99).

6 Implemented systems

In order to provide evidence of the generality of our approach, in this section
we briefly present some examples. First we enumerate some existing procedures
which are captured by our framework. Then we present a brief description of
our own solver MATH-SAT.

6.1 Examples

Our framework captures a significant amount of existing procedure used in var-
ious application domains. We briefly recall some of them.



Omega [Pug92] is a procedure used for dependence analysis of software. It is
an integer programming algorithm based on an extension of Fourier-Motzkin
variable elimination method. It handles boolean combinations of linear con-
straints by simply pre-computing the DNF of the input formula.

TSAT [ACGY9] is an optimized procedure for temporal reasoning able to handle
sets of disjunctive temporal constraints. It integrates DPLL with a simplex
LP tool, adding some form of forward checking and static learning.

LPSAT [WW99] is an optimized procedure for Math-formulas over linear real
constraints, used to solve problems in the domain of resource planning. It
accept only formulas with positive mathematical constraints. LPSAT in-
tegrates DPLL with an incremental simplex LP tool, and performs back-
jumping and learning.

SMV+QUAD-CLP [CABN97] integrates OBDDs with a quadratic constraint
solver to verify transition systems with integer data values. It performs a
form of intermediate assignment checking.

DDD [MLAHO01] are OBDD-like data structures handling boolean combinations
of temporal constraints in the form (z—z < 3), which are used to verify timed
systems. They combine OBDDs with an incremental version of Belman-Ford
minimal path and cycle detection algorithm.

Unfortunately, the last two approaches inherit from OBDDs the drawback of
requiring exponential space in worst case.

6.2 A DPLL-based implementation of MATH-SAT

In [ABC*02,ACKS02] we presented MATH-SAT, a decision procedure for Math-
formulas over boolean and linear mathematical propositions over the reals. MATH-
SAT uses as ASSIGN_ENUMERATOR an implementation of DPLL, and as MATH-
SOLVER a hierarchical set of mathematical procedures for linear constraints
on real variables able to handle theories of increasing expressive power. The
latter include a procedure for computing and exploiting equivalence classes
from equality constraints like (x = y), a Bellman-Ford minimal path algo-
rithm with cycle detection for handling differences like (z — y < 4), and a
Simplex LP procedure for handling the remaining linear constraints. MATH-
SAT implements and uses most of the tricks and optimizations described in
Section 5. Technical details can be found in [ABC*02]. MATH-SAT is available
at http://www.dit.unitn.it/“rseba/Mathsat.html.

In [ABC*02,ACKS02] preliminary experimental evaluations were carried out
on tests arising from temporal reasoning [ACG99] and formal verification of
timed systems [ACKS02]. In the first class of problems, we have compared our
results with the results of the specialized procedure TSAT; although MATH-SAT
is able to tackle a wider class of problems, it runs faster that the TSAT solver,
which is specialized to the problem class. In the second class, we have encoded
bounded model checking problems for timed systems into the satisfiability of
Math-formulas, and run MATH-SAT on them. It turned out that our approach
was comparable in efficiency with two well-established model checkers for timed
systems, and significantly more expressive [ACKS02].
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