Skip to main content

A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid

  • Conference paper
  • First Online:
Algorithm Theory — SWAT 2002 (SWAT 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2368))

Included in the following conference series:

Abstract

An algorithm is given to solve the minimum cycle basis problem for regular matroids. The result is based upon Seymour’s decomposition theorem for regular matroids; the Gomory-Hu tree, which is essentially the solution for cographic matroids; and the corresponding result for graphs. The complexity of the algorithm is O((n + m)4), provided that a regular matroid is represented as a binary n × m matrix. The complexity decreases to O((n + m)3.376) using fast matrix multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Coleman and A. Pothen. The null space problem I. Complexity. SIAM Journal of Algebraic Discrete Methods, 7, 1986.

    Google Scholar 

  2. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, 1987.

    Google Scholar 

  3. R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Golynski. A polynomial time algorithm to find the minimum cycle basis of a regular matroid. Master’s thesis, University of New Brunswick, 2002.

    Google Scholar 

  5. A. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM, 45(5):783–797, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on Computing, 16(2):358–366, 1 1987.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory (B), 1980.

    Google Scholar 

  8. K. Truemper. A decomposition theory for matroids.V. Testing of matrix total unimodularity. Journal of Combinatorial Theory (B), 1990.

    Google Scholar 

  9. K. Truemper. Matroid Decomposition. Academic Press, Boston, 1992.

    MATH  Google Scholar 

  10. W. Tutte. Lectures on matroids. J. Res. Nat. Bur. Standards Sect. B, 69B:1–47, 1965.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golynski, A., Horton, J.D. (2002). A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid. In: Penttonen, M., Schmidt, E.M. (eds) Algorithm Theory — SWAT 2002. SWAT 2002. Lecture Notes in Computer Science, vol 2368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45471-3_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45471-3_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43866-3

  • Online ISBN: 978-3-540-45471-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics