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Abstract. In this paper, we describe new results on the security, in the
Luby-Rackoff paradigm, of two modified Feistel constructions, namely
the L-scheme, a construction used at various levels of the MISTY block-
cipher which allows to derive a 2n-bit permutation from several n-bit
permutations, and a slightly different construction named the R-scheme.
We obtain pseudorandomness and super-pseudorandomness proofs for L-
schemes and R-schemes with a sufficient number of rounds, which extend
the pseudorandomness and non superpseudorandomness results on the
4-round L-scheme previously established by Sugita [Su96] and Sakurai
et al. [Sa97]. In particular, we show that unlike the 3-round L-scheme,
the 3-round R-scheme is pseudorandom, and that both the 5-round L
scheme and the 5-round R scheme are super pseudorandom (whereas the
4 round versions of both schemes are not super pseudorandom). The se-
curity bounds obtained here are close to those established by Luby and
Rackoff for the three round version of the original Feistel scheme.

1 Introduction

A key dependent cryptographic function such as a blockcipher can be viewed as
a random function associated with a randomly selected key value. It is gener-
ally defined using a recursive construction process. Each step of the recursion
consists of deriving a random function (or permutation) f from r previously
defined random functions (or permutations) f1, .., fr , and can be represented by
a relation of the form f = Φ(f1, .., fr). The most studied example so far is the
f = Ψ(f1, .., fr) r-round Feistel construction, which allows to derive a 2n-bit to
2n-bit random permutation from r n-bit to n-bit functions. But there exist other
well known constructions such as for instance Massey and Lai’s alternative to
the Feistel scheme used in IDEA [La90] and the constructions allowing to deduce
a 2n-bit permutation from several n-bit permutations used in Matsui’s MISTY
blockcipher [Ma93].

The strongest security requirement one can put on a f random function or
permutation representing a key dependent cryptographic function is (informally
speaking) that f be undistinguishable with a non negligible success probability
from a perfect random function f∗ or permutation c∗, even if a probabilistic
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testing algorithm A of unlimited power is used for that purpose and if the q
number of adaptively chosen queries of A to the random instance of f or f∗ to
be tested is large.

It is generally not possible to prove undistiguishability properties for ”real
life” cryptologic random function f and large q numbers of queries, because this
would require a far too long key length. However, it is often possible to prove or
disprove that if a random function f encountered at a given level of a cryptologic
function construction is related to random functions encountered at the lower
recursion level by a relation of the form f = Φ(f1, .., fr), then if we replace the
actual f1 to fr random functions of the cipher by independent perfect random
functions or permutations f∗

1 to f∗
r (or, in a more sophisticated version of the

same approach, by f ′
1 to f ′

r functions which are sufficiently undistinguishable
from f∗

1 to f∗
r ), the resulting modified f random function is undistinguishable

from a random function (or permutation). This provides a useful method for
assessing the soundness of blockcipher constructions. For instance, in the case of a
three-round Feistel construction, a well known theorem first proved by Luby and
Rackoff [Lu88] provides upper bounds on the |p−p∗| advantage of any A testing
algorithm in distinguishing the f = Ψ(f∗

1 , f
∗
2 , f

∗
3 ) 2n-bit random permutation

deduced from three independent ideal random functions f∗
1 , f

∗
2 and f∗

3 from a
2n-bit perfect random permutation c∗ with q adaptively chosen queries to the
tested instance of f or f∗. This advantage is bounded over by q2

2n .
The research on pseudorandomness properties of cryptographic constructions

initiated Luby and Rackoff’s seminal paper [Lu88] has represented a very active
research study for the last decade. Just to mention a few examples, Zheng, Mat-
sumoto and Imai and later on Sugita and Sakurai et al. investigated generalised
Feistel constructions [Zh89],[Su96],[Su97], Patarin explicited the link between
the best advantage of a q-queries distinguisher and the q-ary transition proba-
bilities associated with f and proved undistinguihability bounds for numerous
r-round Feistel constructions [Pa91], Maurer showed how to generalise undistin-
guishability results related to perfect random functions to undistinguishability
results related to nearly perfect random functions (e.g. locally random func-
tions)[Ma92], Bellare, Kilian, Rogaway et al. [Be94] investigated the application
of similar techniques to modes of operation such as CBC MACs, Aiello and al.
proved undistiguihability results on some parallelizable alternatives to the Feistel
construction [Ai96] , Vaudenay embedded techniques for deriving undistinguisha-
bility bounds into a broader framework he named the decorrelation theory, and
applied bounds provided by decorrelation techniques to proving the resistance
of actual ciphers, e.g. DFC, against differential and linear cryptanalysis.

In this paper, we describe new results on the security of some blockci-
pher constructions in the above described paradigm, i.e. we investigate some
f = Φ(f1, .., fk) constructions and upper bound the probability of distinguishing
f from a perfect random function when Φ is applied to perfect random functions
f∗
i or to perfect random permutations c∗

i . We consider alternatives to the Feistel
construction allowing to derive a 2n-bit permutation from several n-bit permu-
tations, namely the so-called L-scheme and R-scheme constructions. The L-type
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construction is used for instance at various levels of the construction of Matsui
and al. Misty blockcipher [Ma93], as well as in the Kasumi variant of Misty
recently adopted as the standard blockcipher for encryption and integrity pro-
tection in third generation mobile systems [Ka]. We obtain pseudorandomness
and superpseudorandomness proofs for L-scheme and R-scheme constructions
with a sufficient number of rounds, which extend the results on the pseudo ran-
domness of the 4-round L-scheme previously established by Sugita [Su96] and
Sakurai et al. [Sa97]. In particular, we show that unlike the 3-round L scheme,
the 3-round R scheme is pseudorandom, and that both the 5-round L scheme and
the 5-round R scheme are super pseudorandom (whereas the 4 round versions
of both schemes are not super pseudorandom).

This paper organised as follows: Section 2 introduces basic definitions and
useful general results on random functions and techniques for proving that two
random functions are undistiguishable. Section 3 describes the R and L schemes.
Sections 4 and 5 present our results on the pseudo-randomness and the su-
perpseudorandomness of the L-scheme and the R-scheme respectively, for various
numbers of rounds, and Section 6 concludes the paper.

2 Preliminaries

2.1 Notation

Through this paper we are using the following notation: In denotes the {0, 1}n
set. Fn,m denotes the In

Im set of functions from In into Im: thus |Fn,m| = 2m.2n

.
Fn denotes the Fn,n set: thus |Fn| = 2n.2

n

. Pn denotes the set of permutations
on In: thus |Pn| = 2n!.

2.2 Random Functions

A random function of Fn,m is defined as a random variable f of Fn,m, and
can be viewed as a probability distribution (Pr[f = ϕ])ϕ∈Fn,m

over Fn,m, or
equivalently as a (fω)ω∈Ω family of Fn,m elements. In particular:

– A n-bit to m-bit key dependent cryptographic function is determined by a
randomly selected key value K ∈ K, and can thus be represented by the
random function f = (fK)K∈K of Fn,m.

– A cryptographic construction of the form f = Φ(f1, f2, .., fr) can be viewed
as a random function of Fn,m determined by r random functions fi ∈
Fni,mi , i = 1..r

Definition 1. We define a perfect random function f∗ of Fn,m as a uniformly
drawn element of Fn,m. In other words, f∗ is associated with the uniform prob-
ability distribution over Fn,m. We define a c∗ perfect random permutation on In
as a uniformly drawn element of Pn. In other words, c∗ is associated with the
uniform probability distribution over Pn.
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Definition 2. (t-ary transition probabilities associated with f). Given a random

function f of Fn,m, we define the Pr[x
f�→ y] transition probability associated with

a x t-uple of Ininputs and a y t-uple of Im outputs as
Pr[x

f�→ y] = Pr[f(x1) = y1 ∧ f(x2) = y2 ∧ ... ∧ f(xt) = yt]
= Prω∈Ω [fω(x1) = y1 ∧ fω(x2) = y2 ∧ ... ∧ fω(xt) = yt]

In the sequel we will use the following simple properties:

Property 1 If f∗ is a perfect random function Fn,m and if x = (x1, ..., xt) is
a t-uple of pairwise distinct In values and if y is any t-uple of Imvalues, then

Pr[x
f∗
�→ y] = 1

|Im|t = 2−m.t

Property 2 Let c∗ be a perfect random permutation on In. If x = (x1, ..., xt)
is a t-uple of pairwise distinct In values y = (y1, ..., yt) is a t-uple of pairwise

distinct In values then Pr[x c∗
�→ y] = (In − t)!/|In|! = (2n−t)!

(2n)!

Property 3 Let c∗ be a perfect random permutation on In. If x and x′ are two
distinct elements of In and δ is a given value of In then Pr[c∗(x)⊕ c∗(x′) = δ] ≤
2
2n .

Proof: Pr[c∗(x)⊕ c∗(x′) = 0] = 0 since x �= x′. If δ �= 0, Pr[c∗(x)⊕ c∗(x′) = δ] =
2n·2n−2···1

2n! = 1
2n−1 ≤ 2

2n . So, Pr[c∗(x) ⊕ c∗(x′) = δ] ≤ 2
2n .

2.3 Distinguishing Two Random Functions

In proofs of security such as the one presented here, we want to upper bound
the probability of any algorithm to distinguish whether a given fixed function ϕ
is an instance of a random function f = Φ(f∗

1 , f
∗
2 , .., f

∗
r ) of Fn,m or an instance

of the perfect random function f∗, using less than q queries to ϕ.
Let A be any distinguishing algorithm of unlimited power that, when input

with a function ϕ of Fn,m (which can be modeled as an ” oracle tape ” in the
probabilistic Turing Machine associated with A) selects a fixed number q of
distinct chosen or adaptively chosen input values Xi (the queries), obtains the
q corresponding output values Yi = f(Xi), and based on these results outputs
0 or 1. Denote by p (resp by p∗) the probability for A to answer 1 when fed
with a random instance of f (resp of f∗). We want to find upper bounds on the
AdvA(f, f∗) = |p − p∗| advantage of A in distinguishing f from f∗ in q queries.

As first noticed by Patarin [Pa91], the best AdvA(f, f∗) advantage of any
A distinguishing algorithm for distinguishing f from f∗ is entirely determined
by the Pr[x

f�→ y] q-ary transition probabilities associated with each X =
(X1, · · · , Xq) q-uple of pairwise distinct In values and each Y = (Y1, · · · , Yq)
q-uple of Im values. The following Theorem, which was first proved in [Pa91],
and equivalent versions of which can be found in [Va99], is a very useful tool for
deriving establishing upper bounds on the AdvA(f, f∗) based on properties of

the Pr[x
f�→ y] q-ary transition probabilities.
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Theorem 1 Let f be a random function of Fn,m and f∗ a perfect random func-
tion representing a uniformly drawn random element of Fn,m. Let q be an integer.
Denote by X the In

q set of all X = (X1, · · · , Xq) q-tuples of pairwise distinct
elements. If there exists a Y subset of Im

q and two positive real numbers ε1 and
ε2 such that

1) |Y| > (1 − ε1) · |Im|q (i)

2) ∀X ∈ X ∀Y ∈ YPr[X
f�→ Y ] ≥ (1 − ε2) · 1

|Im|q (ii)
then for any A distinguishing using q queries

AdvA(f, f∗) ≤ ε1 + ε2

In order to improve the selfreadability of this paper, a short proof of Theorem
1 is provided in appendix at the end of this paper.

3 Description of the L- and R-Schemes

We now describe two simple variants of the Feistel scheme, that we propose to
name L-scheme and R-scheme, following the terminology proposed by Kaneko
and al. in their paper on the provable security against differential and linear
cryptanalysis of generalised Feistel ciphers [Ka97].

The L-scheme and R-scheme both allow to derive a 2n-bit to 2n-bit permu-
tation from several n-bit to n bit permutations (not only n-bit to n-bit functions
as in the Feistel scheme), using only one n-bit to n bit permutation per round.

The 1-round L-scheme is depicted in Figure 1. It transforms a c1 permutation
of In into the ψL(c1) permutation of I2n defined by

ψL(c1)(x1, x0) = (x0, c1(x1) ⊕ x0)

The extension to r rounds is straightforward: the r-round L-scheme transforms
r In permutations c1 to cr into the I2n permutation defined by

ψL(c1, c2, ..., cr) = ψL(cr) ◦ · · · ◦ ψL(c1)

The L-scheme is used at several levels of the construction of the MISTY and
KASUMI ciphers, namely the derivation of the so-called FI and FO functions,
and also the upper level of the construction in the case of MISTY2. One
remarkable feature of the r-round L-scheme is that two ci permutations can be
processed in paralell.

The 1-round R-scheme is depicted in Figure 1 too. It transforms a c1 permu-
tation of In into the ψR(c1) permutation of I2n defined by

ψR(c1)(x1, x0) = (c1(x1) ⊕ x0, c1(x1))

The r-round R-scheme transforms r In permutations c1 to cr into the I2n per-
mutation defined by ψR(c1, c2, ..., cr) = ψR(cr) ◦ · · · ◦ ψR(c1).
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Fig. 1. L-scheme one round at left and R-scheme one round at right

In the sequel, we will several times consider the slightly simplified versions
ψ′
L(c1, c2, ..., cr) and ψ′

R(c1, c2, ..., cr) of ψL(c1, c2, ..., cr) and ψR(c1, c2, ..., cr) ob-
tained by omitting the XOR operation and the exchange of the left and right
halves in the final round. We will sometimes analyse such simplified variants,
whose pseudorandomness properties are obviously the same as those of the
full r-round L or R scheme from which they are derived, instead of the full
r-round L or R scheme, in order to simplify some discussions. We can notice
that the ψ′

R(c1, c2, ..., cr) and ψ′
L(c

−1
r , c−1

r−1, ..., c
−1
1 ) permutations are inverse of

each other. This remark will be useful when it comes to analysing the super
pseudorandomness properties of the L and R schemes.

Through the two next Sections, especially in proofs, we are using the following
additional notation:

– I is an abreviation for the (In)q set.
– I 	= = ((In)q))	= denotes the subset of (In)q consisting of all the q-tuples of

pairwise distinct In values and I= = (In)q\I 	=.
– X denotes the subset of (I2n)q consisting of all (x1, · · · , xq) q-tuples of pair-

wise distinct I2n values.
– Y will denote a subset of (I2n)q consisting of (y1, · · · , yq) q-tuples of I2n

values. The exact definition of Y will vary. This Y will be redefined in each
Section where this notation is needed.

4 Analysis of the L-Scheme

In this Section, we compare, for various values of the r number of rounds of an
L-scheme, the f = ψL(c∗

1, c
∗
2, ..., c

∗
r) 2n-bit random permutation deduced from r

independent perfect random n-bit permutations c∗
1, c

∗
2, ..., c

∗
r with a perfect 2n-bit

function f∗ or a 2n-bit perfect permutation c∗.
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4.1 Three-Round L-Scheme: ψL(c∗
1, c

∗
2, c

∗
3) Is Not a Pseudo-Random

Function

As already noticed by several authors [Zh89], the function f = ψL(c∗
1, c

∗
2, c

∗
3)

associated with the three-round L-scheme is not pseudo-random.
Since the omission of the final XOR and the final exchange of the left and

right output halves does not affect the pseudorandomness properties of f , we
can consider the function f = ψ′

L(c
∗
1, c

∗
2, c

∗
3), instead of ψL(c∗

1, c
∗
2, c

∗
3).

Let us show that 4 chosen input queries suffice to distinguish f from a the
perfect random function f∗ with a very large probability. Let us consider the
encryption, under f , of two distinct 2n-bit (x1, x0) plaintext blocks (a, b) and
(a′, b) which right halves are equal, and denote by (c, d) and (c′, d′) the two
corresponding (y1, y0) ciphertext blocks. We can notice that d ⊕ d′ is equal to
c∗
1(a)⊕ c∗

1(a
′), and thus independent of b. Therefore if we replace b by any other

value b′ and do the same computation as before, the new obtained value of d⊕d′

will be left unchanged. This property allows to distinguish f from a perfect
random function of I2n with an advantage close to 1.

4.2 Four-Round L-Scheme: ψL(c∗
1, c

∗
2, c

∗
3, c

∗
4) Is a Pseudo-Random

Function

As already established by Sakurai et al. [Sa97], the four-round version of the
L-scheme is indistinguishable from a perfect pseudo-random function. In order
for this paper to provide a self contained summary of the properties of the L
and R schemes inside the security framework introduced in Section 2, we restate
this result as follows.

Theorem 2 Let n be an integer, c∗
1, c∗

2, c∗
3, c∗

4 be four independent random
function from In to In and f∗ be the perfect random function on the I2n set. Let
f = ψL(f∗

1 , f
∗
2 , f

∗
3 , f

∗
4 ) denote the random permutation associated with the four

rounds of L-scheme. For any adaptative distinguisher A with q queries we have:

AdvqA(f, f∗) ≤ 7
2
q22−n

A short proof for Theorem 2 is provided in appendix at the end of this
paper. Since the proof technique is rather similar to the one used in the more
detailed proof of Theorem 5 on the pseudorandomness of the 3-round R-scheme,
we omitted some details in the proof of Theorem 2.

4.3 Four-Round L-Scheme: ψL(c∗
1, c

∗
2, c

∗
3, c

∗
4) Is Not a Super

Pseudo-Random Permutation

As already established by Sakurai and al. [Sa97], the 4-round L-scheme does
not provide a super pseudo random permutation, i.e. it is possible with a small
number of encryption and decryption queries to distinguish ψL(c∗

1, c
∗
2, c

∗
3, c

∗
4) from

a perfect random permutation.
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Instead of providing here a direct proof of this property, let us show that this
is a straightforward consequence of the fact (established in the next Section) that
the 4-round R-scheme does not provide a super pseudo random function. As a
matter of fact, ψ′

R(c1, c2, c3, c4) and ψ′
L(c

−1
4 , c−1

3 , c−1
2 , c−1

1 ) are inverse of each
other, as stated in Section 2 and therefore, the distinguisher for ψR(c∗

1, c
∗
2, c

∗
3, c

∗
4)

can be converted in a distinguisher for ψL(c∗
1, c

∗
2, c

∗
3, c

∗
4) with the same number

of queries and the same advantage.

4.4 Five-Round L-Scheme: ψL(c∗
1, c

∗
2, c

∗
3, c

∗
4, c

∗
5) Is a Super

Pseudo-Random Permutation

Recall that a super pseudo random distinguisher is an adaptative distinguisher
which can call at one and the same time the cipher c and the cipher c−1. The
following Theorem shows that the five-round version of the L-scheme provides a
super pseudorandom permutation.

Theorem 3 Let n be an integer, c∗
1, c∗

2, c∗
3, c∗

4, c∗
5 be five independent random

functions from In to In and c∗ be the perfect random permutation on the I2n
set. Let c = ψL(c∗

1, c
∗
2, c

∗
3, c

∗
4, c

∗
5) denote the random permutation associated with

the five round L scheme. For any adaptative super pseudorandom permutation
distinguisher A with q queries, we have:

AdvqA(c, c∗) ≤ 9
2

· q2

2n

To prove this theorem, we need to use a variant of Theorem 1 due to Patarin
in [Pa91] concerning permutations (that we provide here without proof):

Theorem 4 Let m be an integer, ε be a positive real number, c be a random
permutation on the {0, 1}m set, c∗ be the perfect random permutation on the same
set. We denote by X the subset of (X1, · · · , Xq) q-tuples that are pairwise distinct.
Let A be any super pseudo random distinguisher with q queries. If Pr[X c�→ Y ]
≥ (1 − ε) · 1

|Im|q for all X and Y q-tuples in X then AdvqA(c, c∗) ≤ ε + q(q−1)
2·2m

Proof of Theorem 3: We will compare the c = ψ′
L(c

∗
1, c

∗
2, c

∗
3, c

∗
4, c

∗
5) permu-

tation generator of Figure 2 (wich superpseudorandomness properties are exactly
the same as for ψL(c∗

1, c
∗
2, c

∗
3, c

∗
4, c

∗
5)) with the perfect random permutation c∗ of

I2n. For that purpose, let us consider any X = (x1i , x
0
i ) ∈ X q-tuple of pairwise

distinct values of I2n and any Y = (y1i , y
0
i ) q-tuple of pairwise distinct values of

I2n. We want to establish lower bound on Pr[X c�→ Y ] and then apply Theorem 4
above. We are using the notation x2 = (x2i )i=1..q, x3 = (x3i )i=1..q, x4 = (x4i )i=1..q
to refer to the q-tuples of In intermediate words induced by the q considered f
computations, at the locations marked in Figure 2.

Pr[X c�→ Y ] =
∑

x2,x3,x4 Pr[(c∗
1(x

1) ⊕ x0 = x2) ∧ (c∗
2(x

0) ⊕ x2 = x3)

∧(c∗
3(x

2) ⊕ x3 = x4)
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Fig. 2. L-scheme five rounds

∧(c∗
4(x

3) ⊕ x4 = y0) ∧ (c∗
5(x

4) = y1)]
≥ ∑

x2,x3∈I �= Pr[(c∗
1(x

1) ⊕ x0 = x2) ∧ (c∗
2(x

0) ⊕ x2 = x3)]

·∑x4 Pr
[

(c∗
3(x

2) ⊕ x3 = x4)∧
(c∗

4(x
3) ⊕ x4 = y0) ∧ (c∗

5(x
4) = y1)

]
(1)

Let us consider any fixed x2, x3 q-tuples of I 	=. In order to establish a lower
bound on the

∑
x4 Pr[(c∗

3(x
2) ⊕ x3 = x4) ∧ (c∗

4(x
3) ⊕ x4 = y0) ∧ (c∗

5(x
4) = y1)]

factor in (2), we define the following set Z of x4 q-tuples:

Z = {x4|x4 ∼ y1 ∧ x4 ⊕ y0 ∈ I 	= ∧ x4 ⊕ x3 ∈ I 	=}
where x4 ∼ y1 means that ∀i, j x4i = x4j if and only if y1i = y1j . Let us denote
by q1 ≤ q, the number of distinct y1i values. there exist i1, · · · , iq1 indexes such
that y1i1 , · · · , y1iq1 are pairwise distinct. Each ik ∈ {i1, · · · , iq1} index determine a
class such that for all elements i of this class, y1i = y1ik . So, ∀i ∈ [1, .., q],∃!ik ∈
{i1, · · · , iq1}/y1i = y1ik , Cl(i) =def ik.
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There exist α = 2n!
(2n−q1)! x4 values such that x4 ∼ y1 (as a matter of fact

such an x4 is entirely determined by q1 distinct values). Now:

|Z| ≥ |{x4|x4 ∼ y1}| − |{x4|x4 ∼ y1 ∧ x4 ⊕ y0 /∈ I 	=}|
−|{x4|x4 ∼ y1 ∧ x4 ⊕ x3 /∈ I 	=}|

≥ |{x4|x4 ∼ y1}| −
∑
i 	=j

|{x4|x4 ∼ y1 ∧ x4i ⊕ x4j = y0i ⊕ y0j }|

−
∑
i 	=j

|{x4|x4 ∼ y1 ∧ x4i ⊕ x4j = x3i ⊕ x3j}|

Given i �= j, we can upper bound the size of Sij = {x4|x4 ∼ y1∧x4i⊕x4j = y0i ⊕y0j }
by 2α

2n .
As a matter of fact:

– if y1i = y1j , then y0i ⊕ y0j �= 0 (because otherwise the (y1i , y
0
i ) word would be

equal to (y1j , y
0
j )), but x4 ∼ y1 implies x4i = x4j and thus x4i ⊕ x4j cannot be

equal to y0i ⊕ y0j . So, |Sij | = 0
– y1i �= y1j , then if x4 ∈ Sij , x4Cl(j) is entirely determined by x4Cl(i) since x4Cl(j) =

x4Cl(i)⊕y0i ⊕y0j . Thus |Sij | contains at most 2n(2n−2) · · · (2n−q1) = α
2n−1 ≤

2α
2n elements.

Similary, using the fact that x3i �= x3j , we can upper bound the size of {x4|x4 ∼
y1 ∧ x4i ⊕ x4j = x3i ⊕ x3j}| by 2α

2n . So, we have:

|Z| ≥ α

[
1 − q(q − 1)

2
2
2n

− q(q − 1)
2

2
2n

]
i.e. |Z| ≥ 2n!

(2n − q1)!
[1 − 2q2

2n
]

Now,
∑

x4 Pr[(c∗
3(x

2) ⊕ x3 = x4) ∧ (c∗
4(x

3) ⊕ x4 = y0) ∧ (c∗
5(x

4) = y1)] ≥∑
x4∈Z Pr[(c∗

3(x
2) ⊕ x3 = x4) ∧ (c∗

4(x
3) ⊕ x4 = y0) ∧ (c∗

5(x
4) = y1)]. But, for any

x4 ∈ Z, we have Pr[c∗
5(x

4) = y1] = (2n−q1)!
2n! = 1

α and Pr[(c∗
3(x

2) = x4 ⊕ x3)] =
(2n−q)!

2n! due to Property 2 and the fact that the x2i and the x4i ⊕ x3i are pairwise
distinct. We also have Pr[(c∗

3(x
2) = x4 ⊕ x3)] = (2n−q)!

2n! for the same reasons, so
that:∑

x4 Pr[(c∗
3(x

2) ⊕ x3 = x4) ∧ (c∗
4(x

3) ⊕ x4 = y0) ∧ (c∗
5(x

4) = y1)]

≥ |Z| ·
(

(2n − q)!
2n!

)2

· 1
α

≥ α ·
(
1 − 2q2

2n

) (
(2n − q)!

2n!

)2

· 1
α

≥
(
1 − 2q2

2n

) (
(2n − q)!

2n!

)2
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If we now come back to inequality (2), we thus have:

Pr[X c�→ Y ] ≥
∑

x2,x3∈I �=
Pr


 (c∗

1(x
1) ⊕ x0 = x2)

∧
(c∗

2(x
0) ⊕ x2 = x3)


 ·

(
1 − 2q2

2n

) (
(2n − q)!

2n!

)2

(i)

Let us now establish a lower bound on

B =
∑

x2,x3∈I �=
Pr[(c∗

1(x
1) ⊕ x0 = x2) ∧ (c∗

2(x
0) ⊕ x2 = x3)]

= Pr[x2 ∈ I 	= ∧ x3 ∈ I 	=]
·Pr[(c∗

1(x
1) ⊕ x0) ∈ I 	= ∧ (c∗

2(x
0) ⊕ x2) ∈ I 	=|x2 ∈ I 	=]

But Pr[(c∗
1(x

1) ⊕ x0) ∈ I 	=] ≥ 1 − ∑
i 	=j Pr[c∗

1(x
1
i ) ⊕ c∗

1(x
1
j ) = x0i ⊕ x0j ] and it is

easy to establish (using the fact that (x1i , x
0
i ) �= (x1j , x

0
j ) and Property 3), that

for any two distinct indexes i and j, Pr[c∗
1(x

1
i ) ⊕ c∗

1(x
1
j ) = x0i ⊕ x0j ] ≤ 1

2n−1 ≤ 2
2n

Thus Pr[(c∗
1(x

1) ⊕ x0) ∈ I 	=] ≥ 1 − q(q−1)
2 · 2

2n ≥ 1 − q2

2n . for similar reasons,

Pr[(c∗
2(x

0) ⊕ x2) ∈ I 	=|x2 ∈ I 	=] ≥ 1 − q2

2n . Thus B ≥
(
1 − q2

2n

)2
≥ 1 − 2q2

2n (ii) .
Now, by combinig (i) and (ii), we obtain:

Pr[X c�→ Y ] ≥
(
1 − 2q2

2n

)2 (
(2n − q)!

2n!

)2

Now,
(
(2n−q)!

2n!

)2
≥ 1

22nq and
(
1 − 2q2

2n

)2
≥ 1 − 4q2

2n , so that

Pr[X c�→ Y ] ≥
(
1 − 4q2

2n

)
· 1
22nq

We can now apply Theorem 4 with ε = 4q2

2n and we obtain:

AdvqA(c, c∗) ≤ 4q2

2n + q(q−1)
2·22n

AdvqA(c, c∗) ≤ 9
2 · q2

2n

✷

5 Analysis of the R-Scheme

In this Section, we compare, for various values of the r number of rounds of an
R-scheme, the f = ψR(c∗

1, c
∗
2, ..., c

∗
r) 2n-bit random permutation deduced from r

independent perfect random n-bit permutations c∗
1, c

∗
2, ..., c

∗
r with a perfect 2n-bit

function f∗.
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5.1 Three-Round R-Scheme

We first establish the following theorem for a 3-round version of the R-scheme.

Theorem 5 Let n be an integer, c∗
1, c

∗
2, c

∗
3 be three independent perfect random

permutation from In to In and f∗ be the perfect random function on the I2n
set. Let f = ψR(c∗

1, c
∗
2, c

∗
3) denote the random permutation associated with the

3-rounds R-scheme. For any adaptive distinguisher A with q queries, we have:

AdvqA(f, f∗) ≤ 3q22−n

2

3
*

*

*
1C

C

C

x x

x

x

y y1 0

1 0

2

3

Fig. 3. R-scheme three rounds

Proof: We will compare the f = ψ′
R(c∗

1, c
∗
2, c

∗
3) permutation generator of Figure

3 (which pseudorandomness properties are exactly the same as for ψR(c∗
1, c

∗
2, c

∗
3))

with the perfect random function f∗. Let us first introduce some notation. We
consider a X = (Xi)i∈[1..q] = (x1i , x

0
i ) q-tuple of 2n-bit f input words. We denote

the corresponding q-tuple of f output words by Y = (Yi)i∈[1..q] = (y1i , y
0
i )i∈[1..q].

For each (y1i , y
0
i ) = ψ′

R(c∗
1, c

∗
2, c

∗
3)(x

1
i , x

0
i ) computation, we denote by x2i and x3i

the intermediate values which locations are marked in Figure 3. More explicitly:

x2i = c∗
1(x

1
i ) ⊕ x0i

x3i = c∗
1(x

1
i ) ⊕ c∗

2(x
2
i ) = y0i ⊕ c∗

1(x
1
i )
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Finally, we denote the (x0i )i∈[1..q], (x1i )i∈[1..q], (x2i )i∈[1..q] , (x3i )i∈[1..q],
(y0i )i∈[1..q] and (y1i )i∈[1..q] q-tuples of n-bit words by x0, x1, x2, x3, y0, y1 re-
spectively.

We now define X as the set of X q-tuples of pairwise distinct I2n words (i.e.
such that for any distinct i,j numbers in [1..q], x1i �= x1j or x0i �= x0j ), and define
Y as the set of those Y q-tuples of I2n words such that the corresponding y1

and y0 q-tuples both consist of pairwise distinct In words: Y = {(Y1, · · · , Yq) ∈
(I2n)q / y1 ∈ I 	=, y0 ∈ I 	=}.

We want to establish a lower bound on the size of Y and the Pr[X
f�→ Y ]

transition probability associated with any X q-tuple in X and any Y q-tuple
in Y and show that there exists ε1 and ε2 real numbers satisfying conditions of
Theorem 1.

Let us first establish a lower bound on |Y|. We have:

|Y| = |I2n|q · (1 − Pr[y1 /∈ I 	= ∨ y0 /∈ I 	=])

≥ |I2n|q(1 −
∑

i,j∈[1..q],i 	=j
Pr[y1i = y1j ] −

∑
i,j∈[1..q],i 	=j

Pr[y0i = y0j ])

≥ |I2n|q(1 − q(q − 1)
2

· 2−n − q(q − 1)
2

· 2−n)

≥ |I2n|q(1 − q(q − 1)
2n

)

So, we can take ε1 = q(q−1)
2n .

Now, given any X q-tuple of X and any Y q-tuple of Y let us establish a
lower bound on Pr[X

f�→ Y ].

Pr[X
f�→ Y ] =

∑
x2,x3∈I Pr[(c∗

1(x
1) ⊕ x0 = x2) ∧ (c∗

1(x
1) ⊕ y0 = x3)

∧(c∗
2(x

2) = y0) ∧ (c∗
3(x

3) = y1)]
≥ ∑

x2,x3∈I �= Pr[(c∗
1(x

1) ⊕ x0 = x2) ∧ (c∗
1(x

1) ⊕ y0 = x3)]

·Pr[(c∗
2(x

2) = y0) ∧ (c∗
3(x

3) = y1)] (2)

First, for any x2 q-tuple of I 	= and any x3 q-tuple of I 	=, let us compute
Pr[(c∗

2(x
2) = y0) ∧ (c∗

3(x
3) = y1)] = Pr[(c∗

2(x
2) = y0)] · Pr[(c∗

3(x
3) = y1)]. Since

x2 and y0 both belong to I 	=, we can can apply Property 2 of Section 2 concerning
random permutations, so that Pr[(c∗

2(x
2) = y0)] = (2n−q)!

2n! . For the same reason,
we also have Pr[(c∗

3(x
3) = y1)] = (2n−q)!

2n! .

So, we have Pr[(c∗
2(x

2) = y0) ∧ (c∗
3(x

3) = y1)] =
(
(2n−q)!

2n!

)2
.

Now,
(
(2n−q)!

2n!

)2
≥ 1

22nq .
Therefore, inequality (2) implies:

Pr[X
f�→ Y ] ≥

∑
x2,x3∈I �=

1
22nq

· Pr[(c∗
1(x

1) ⊕ x0 = x2) ∧ (c∗
1(x

1) ⊕ y0 = x3)] (i)
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Let us now estimate B =
∑

x2,x3∈I �= Pr[(c∗
1(x

1) ⊕ x0 = x2) ∧ (c∗
1(x

1) ⊕ y0 = x3)]
We have:

B = Pr[(c∗
1(x

1) ⊕ x0 ∈ I 	= ∧ (c∗
1(x

1) ⊕ y0 ∈ I 	=]
= 1 − Pr[(c∗

1(x
1) ⊕ x0 /∈ I 	= ∨ (c∗

1(x
1) ⊕ y0 /∈ I 	=]

≥ 1 −
∑
i,j,i	=j

Pr[c∗
1(x

1
i ) ⊕ x0i = c∗

1(x
1
j ) ⊕ x0j ]

−
∑
i,j,i	=j

Pr[c∗
1(x

1
i ) ⊕ y0i = c∗

1(x
1
j ) ⊕ y0j ]

Let us evaluate Pr[c∗
1(x

1
i )⊕x0i = c∗

1(x
1
j )⊕x0j ] and Pr[c∗

1(x
1
i )⊕c∗

1(x
1
j ) = x0i⊕x0j ].

Due to Property 3 of Section 2, if x1i �= x1j given any fixed difference δ (here equal
to x0i ⊕ x0j ), Pr[c∗

1(x
1
i ) ⊕ c∗

1(x
1
j ) = δ] ≤ 2

2n . On the other hand, if x1i = x1j , then
x0i �= x0j , so that Pr[c∗

1(x
1
i ) ⊕ x0i = c∗

1(x
1
j ) ⊕ x0j ]. In all cases, Pr[c∗

1(x
1
i ) ⊕ x0i =

c∗
1(x

1
j )⊕x0j ] ≤ 2

2n . Applying this property to the q(q−1)
2 (i, j), i �= j pairs of [1..q]

indexes, we obtain
∑

i,j Pr[c∗
1(x

1
i ) ⊕ x0i = c∗

1(x
1
j ) ⊕ x0j ] ≤ q(q−1)

2n . For the same

reasons,
∑

i,j,i	=j Pr[c∗
1(x

1
i ) ⊕ y0i = c∗

1(x
1
j ) ⊕ y0j ] ≤ q(q−1)

2n . Thus:

B ≥ 1 − 2q(q − 1)
2n

(ii)

By using inequalities (i) and (ii), we obtain:

Pr[X
f�→ Y ] ≥

(
1 − 2q(q − 1)

2n

)
· 1
22nq

We can notice that Pr[X
f∗
�→ Y ] = 1

22nq . So we can apply Theorem 1 with
ε1 = q(q−1)

|In| and ε2 = 2q(q−1)
|In| . We obtain:

AdvqA(f, f∗) ≤ 3q(q−1)
2n

AdvqA(f, f∗) ≤ 3q2

2n

✷

5.2 Four-Round R-Scheme: ψR(c∗
1, c

∗
2, c

∗
3, c

∗
4) Is Not a Super

Pseudo-Random Permutation

We consider the four-round permutation generator f deduced from
ψR(c∗

1, c
∗
2, c

∗
3, c

∗
4) by omitting the final XOR (this does obviously not matter for

the super pseudo randomness issue considered here). The random function f
can be represented by extending the 3-round function of Figure 3 above by one
round.

Let us show that 2 chosen encryption and two chosen decryption queries
suffice to distinguish f from a the perfect random permutation c∗ with a very
large probability. Let us consider the encryption, under the function f , of two
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distinct 2n-bit (x1, x0) plaintext blocks (a, b) and (a, b′) which left halves are
equal, and denote by (c, d) and (c′, d′) the two obtained (y1, y0) ciphertext blocks.
It is easy to check that if we swap the left halves of the two obtained ciphertexts,
thus obtaining two modified ciphertexts (c′, d) and (c, d′) and if we decrypt (c′, d)
and (c, d′) under f−1, we obtain two plantext values α, β and α′, β′ which left
halves are equal: α = α′. This would be extremely unlikely to happen if f was
replaced by a perfect random permutation c∗.

The above test allows to distinguish f from a perfect random permutation
of I2n with a probability close to 1.

5.3 Five-Round R-Scheme: ψR(c∗
1, c

∗
2, c

∗
3, c

∗
4, c

∗
5) Is a Super

Pseudo-Random Permutation

The following theorem is a direct consequence of Theorem 3 due to the fact that
ψ′
R(c1, c2, c3, c4, c5) and ψ′

L(c
−1
1 , c−1

2 , c−1
3 , c−1

4 , c−1
5 ) are inverse of each other, ev-

ery distinguisher for ψR(c∗
1, c

∗
2, c

∗
3, c

∗
4, c

∗
5) can be converted into a distinguisher for

ψL(c∗
1, c

∗
2, c

∗
3, c

∗
4, c

∗
5) with the same number of encryption and decryption queries.

Therefore, Theorem 3 results in the following analogue theorem for the 5-round
R-scheme.

Theorem 6 Let n be an integer, c∗
1, c∗

2, c∗
3, c∗

4, c∗
5 be five independent random

functions from In to In and c∗ be the perfect random permutation on the I2n
set. Let c = ψR(c∗

1, c
∗
2, c

∗
3, c

∗
4, c

∗
5) denote the random permutation associated with

the five round R-scheme. For any adaptive super pseudorandom permutation
distinguisher A with q queries, we have:

AdvqA(c, c∗) ≤ 9
2

· q2

2n

6 Conclusion

As a consequence of previous results, the security properties of the L-scheme
and the R-scheme are distinct when it comes to chosen plaintext attacks, but
equivalent when it comes to chosen plaintext or ciphertext attacks. As a matter
of fact, the minimal number of rounds required in order of the R-scheme to be
undistinguishable from a pseudorandom function with adaptively chosen encryp-
tion queries is less than for the L-scheme (3 rounds instead of 4), whereas the
minimal numbers of rounds required by the R-scheme and the L-scheme in or-
der to be undistinguishable from a pseudorandom permutation with adaptively
chosen encryption or decryption queries are equal (5 rounds for both schemes).

A Appendix

A.1 A Short Proof of Theorem 1

Let us restrict ourselves to the case of any fixed deterministic algorithm A which
uses q adaptively chosen queries (the generalisation to the case of a probabilistic
algorithm is easy).
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A has the property that if the q-uple of outputs encountered during an A
computation is Y = (Y1, · · · , Yq), the value of the X = (X1, · · · , Xq) q-uple n
is of query inputs encountered during this computation is entirely determined
(this is easy to prove by induction: the initial query input X1 is fixed ; if for
a given A computation the first query output is Y1, then X2 is determined,
etc.). We denote by X(Y ) the single q-uple of query inputs corresponding to any
possible Y q-uple of query outputs, and we denote by SA the subset of those
Y ∈ Im

q values such that if the X(Y ) and Y q-uples query inputs and outputs
are encountered in a A computation, then A outputs a 1 answer.

The p and p∗ probabilities can be expressed using SA as

p =
∑

Y ∈SA
Pr[X(Y )

f�→ Y ] and p∗ =
∑

Y ∈SA
Pr[X(Y )

f∗
�→ Y ]

We can now lower bound p using the following inequalities:

p ≥ ∑
Y ∈SA∩Y(1 − ε2) · Pr[X(Y )

f∗
�→ Y ] (due to inequality (ii))

≥ ∑
Y ∈SA

(1 − ε2)Pr[X(Y )
f∗
�→ Y ] − ∑

Y ∈Im
q−mathcalY (1 − ε2) · Pr[X(Y )

f∗
�→ Y ]

But
∑

Y ∈SA
(1 − ε2) · Pr[X(Y )

f∗
�→ Y ] = (1 − ε2)p∗

and∑
Y ∈Im

q−Y(1 − ε2) · Pr[X(Y )
f∗
�→ Y ] = (1 − ε2) · |Im|q−|Y|

|Im| ≤ (1 − ε2) · ε1 (due to
inequality (i)).

Therefore p ≥ (1 − ε2)(p∗ − ε1) = p∗ − ε1 − ε2 · p∗ + ε1 · ε2
thus finally (using p∗ ≤ 1 and ε1 · ε2 ≥ 0)
p ≥ p ∗ −ε1 − ε2 (a)
If we now consider the A′ distinguisher which outputs are the inverse of those

of A (i.e. A′ answers 0 iff A answers 1), we obtain an inequality involving this
time 1 − p and 1 − p∗:
(1 − p) ≥ (1 − p∗) − ε1 − ε2 (b)

Combining inequalities (a) and (b), we obtain |p − p ∗ | ≤ ε1 + ε2 QED.

A.2 A Proof Sketch for Theorem 2

We will compare the f = ψ′
L(c

∗
1, c

∗
2, c

∗
3, c

∗
4) permutation generator of Fig-

ure 4 (which pseudorandomness properties are exactly the same as for
ψL(c∗

1, c
∗
2, c

∗
3, c

∗
4)) with the perfect random function f∗. This proof is near to

the proof of Section 5.1. That’s why we do not detail some computations that
are the same that in Section 5.1.
Let us first introduce some notation. We consider a X = (Xi)i∈[1..q] = (x1i , x

0
i )

q-tuple of 2n-bit f input words. We denote the corresponding q-tuple of
f output words by Y = (Yi)i∈[1..q] = (y1i , y

0
i )i∈[1..q]. For each (y1i , y

0
i ) =

ψ′
L(c

∗
1, c

∗
2, c

∗
3, c

∗
4)(x

1
i , x

0
i ) computation, we denote by x2i and x3i the intermediate

values which locations are marked in Figure 4. More explicitly:

x2i = c∗
1(x

1
i ) ⊕ x0i

x3i = c∗
2(x

0
i ) ⊕ x2i



264 H. Gilbert and M. Minier
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*

*
4

*
1

x

C

C

C

C
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1

1

0

0

x

x

2

3

Fig. 4. L-scheme four rounds

Finally, we denote the (x0i )i∈[1..q], (x1i )i∈[1..q], (x2i )i∈[1..q] , (x3i )i∈[1..q],
(y0i )i∈[1..q] and (y1i )i∈[1..q] q-tuples of n-bit words by x0, x1, x2, x3, y0, y1 re-
spectively.

We now define X as the set of X q-tuples of pairwise distinct I2n words (i.e.
such that for any distinct i,j numbers in [1..q], x1i �= x1j or x0i �= x0j ), and define
Y as the set of those Y q-tuples of I2n words such that the corresponding y1

q-tuples consists of pairwise distinct In words: Y = {(Y1, · · · , Yq) ∈ (I2n)q / y1 ∈
I 	=, y0 ∈ I 	=}.

We want to lower bound the size of Y and the Pr[X
f�→ Y ] transition prob-

ability associated with any X q-tuple in X and any Y q-tuple in Y and show
that there exists ε1 and ε2 real numbers satisfying conditions of Theorem 1.

We have (for more details, see section 5.1):

|Y| = |I2n|q · (1 − Pr[y1 /∈ I 	=])

≥ |I2n|q(1 − q(q − 1)
2.2n

)

So, we can take ε1 = q(q−1)
2.2n .
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Now, given any X q-tuple of X and any Y q-tuple of Y let us establish a
lower bound on Pr[X

f�→ Y ] (for more details, see section 5.1).

Pr[X
f�→ Y ] ≥ ∑

x2,x3,x3⊕y1∈I �= Pr[(c∗
1(x

1) ⊕ x0 = x2) ∧ (x3 = c∗
2(x

0))] ⊕ x2)

·Pr[(c∗
3(x

2) ⊕ x3 = y0) ∧ (c∗
4(x

3) = y1)] (3)

First, for any x2, x3, x3 ⊕ y1 q-tuple of I 	=, we have Pr[(c∗
3(x

2) ⊕ x3 =

y0) ∧ (c∗
3(x

3) = y1)] =
(
(2n−q)!

2n!

)2
≥ 1

22nq (for more details, see section 5.1).
Therefore, inequality (1) implies:

Pr[X
f�→ Y ] ≥

∑
x2,x3,x3⊕y1∈I �=

1
22nq

·Pr[(c∗
1(x

1)⊕x0 = x2)∧(c∗
1(x

1)⊕y0 = x3)] (i)

Let us now estimate:

B =
∑

x2,x3,x3⊕y1∈I �= Pr[(c∗
1(x

1) ⊕ x0 = x2) ∧ (c∗
2(x

0) ⊕ x2 = x3)]

We have:

B = Pr[(c∗
1(x

1) ⊕ x0) ∈ I 	= ∧ (c∗
2(x

0) ⊕ c∗
1(x

1) ⊕ x0) ∈ I 	= ∧ (x3 ⊕ y1) ∈ I 	=]
= 1 − Pr[(c∗

1(x
1) ⊕ x0 ∈ I=) ∨ (c∗

2(x
0) ⊕ c∗

1(x
1) ⊕ x0) ∈ I= ∨ (x3 ⊕ y1) ∈ I=]

≥ 1 − 3.
q(q − 1)

2
.
2
2n

By using inequalities (i) and (ii), we obtain:

Pr[X
f�→ Y ] ≥

(
1 − 3q(q − 1)

2n

)
· 1
22nq

We can notice that Pr[X
f∗
�→ Y ] = 1

22nq . So we can apply Theorem 1 with
ε1 = q(q−1)

2|In| and ε2 = 3q(q−1)
|In| . We obtain:

AdvqA(f, f∗) ≤ 7q(q−1)
2.2n

AdvqA(f, f∗) ≤ 7q2

2.2n

✷
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