
The Block Cipher SC2000

Takeshi Shimoyama1, Hitoshi Yanami1, Kazuhiro Yokoyama1,
Masahiko Takenaka2, Kouichi Itoh2, Jun Yajima2, Naoya Torii2, and

Hidema Tanaka3

1 Fujitsu Laboratories LTD.
4-1-1, Kamikodanaka Nakahara-ku Kawasaki 211-8588, Japan

{shimo,yanami,kayoko}@flab.fujitsu.co.jp
2 Fujitsu Laboratories LTD.

64, Nishiwaki, Ohkubo-cho, Akashi 674-8555, Japan
{takenaka,kito,jyajima,torii}@flab.fujitsu.co.jp

3 Science University of Tokyo
Yamazaki, Noda, Chiba, 278 Japan

tanaka@ee.noda.sut.ac.jp

Abstract. In this paper, we propose a new symmetric key block cipher
SC2000 with 128-bit block length and 128-,192-,256-bit key lengths. The
block cipher is constructed by piling two layers: one is a Feistel structure
layer and the other is an SPN structure layer. Each operation used in
two layers is S-box or logical operation, which has been well studied
about security. It is a strong feature of the cipher that the fast software
implementations are available by using the techniques of putting together
S-boxes in various ways and of the Bitslice implementation.

1 Introduction

In this paper, we propose a new block cipher SC2000. The algorithm has 128-bit
data inputs and outputs and 128-bit, 192-bit, and 256-bit keys can be used. Our
design policy for the cipher is to enable high-speed in software and hardware
processing on various platforms while maintaining the high-level security as ci-
pher. The cipher is constructed by piling a Feistel and an SPN structures with
S-boxes for realizing those properties.

For evaluation of security, we inspect the security in the design against dif-
ferential attacks, linear attacks, higher order differential attacks, interpolation
attacks, and so on. We employ a structure that facilitates security verification
by using modules with established reputation concerning security. In S-box de-
sign, we use composite maps of an exponentiation over a Galois field and affine
transformations[8]. For the diffusion layer in the inner function of Feistel struc-
ture, we use an MDS matrix[4,5,7,10]. We set the number of rounds as for having
a sufficiently good security margin.

As high-speed implementation technology, we designed nonlinear arithmetic
operations to enable high-speed implementation on a wide range of processors.
Individual implementations are realized by selecting optimum parameters cor-
responding to the register lengths and cache memory sizes. Moreover, for the

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 312–327, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

The Block Cipher SC2000 313

fast software encryption of SPN structure, we adopted a structure that permits
the use of latest high-speed implementation called Bitslice[1,2,3,9]. In hardware
implementation, we aimed at a structure that enables extremely compact im-
plementation by using nonlinear arithmetic and logical units with up to 6-bit
input/output in the encryption.

2 Preliminary

Basically, the following rules are used for notation:

– Big-Endian is used as Endian, where the highest bit in each value a is the
0-th bit of a. For example, a = 10 (decimal (4-bit) integer) is expressed as
(a0, a1, a2, a3) = (1, 0, 1, 0).

– The number of bits in a variable is expressed by each variable superscripted
with a decimal number enclosed by parentheses as a(4). For 32-bit variables,
the number of bits is omitted as a.

– A number without a prefix expresses a decimal number, and a number pre-
fixed with 0x expresses a hexadecimal number like as 0x01234567.

– XOR is the exclusive-or of two variables and expressed as a⊕ b.
– AND is the logical product of two variables and expressed as a ∧ b.
– OR is the logical sum of two variables and expressed as a ∨ b.
– NOT is an operation that inverts all bits and expressed as b̄.
– ADD is an operation that applies modulo 232 operation (a+ b (mod 232))
to the result of addition of two 32-bit variables and expressed as a � b.

– SUB is an operation that applies modulo 232 operation (a − b (mod 232))
to the result of subtraction of two 32-bit variables and expressed as a � b.

– MUL is an operation that applies modulo 232 operation (a× b (mod 232))
to the result of multiplication of two 32-bit variables and expressed as a� b.

– Rotate left one bit is an operation that rotates a 32-bit variable left by 1 bit
((a0, a1, · · · , a31)→ (a1, a2, · · · , a0)) and expressed as a ≪1.

3 Algorithm Specifications

3.1 Encryption Function

The encryption function consists of the following three functions: I function,
B function, and R function, each of which has a (32 bits × 4) input/output.
Among these three functions, the I function XORs the key and the B and R
functions stir the data. The encryption function for a 128-bit key consists of
14 rounds of the I function, which XORs the key, and as data randomizing, 7
rounds of the B function and 12 rounds of the R function, totaling 19 rounds.
The encryption function for a 192-bit or 256-bit key consists of 16 rounds of the
I function, which XORs the key, and as data randomizing, 8 rounds of the B
function and 14 rounds of the R function, totaling 22 rounds. Each function is
executed in the order of I-B-I-R×R · · · repeatedly. (See the table below.) For a

314 T. Shimoyama et al.

128-bit key, fifty-six 32-bit extended keys are used; for a 192-bit or 256-bit key,
sixty-four 32-bit extended keys are used.

The following lists the entire configuration of the encryption function. Sym-
bols used in the configuration are as follows: (See also Fig.1.)

I I function
B B function
R5 R function with mask = 0x55555555
R3 R function with mask = 0x33333333
− Straight connection (a, b, c, d)→ (a, b, c, d)
× Cross connection (a, b, c, d)→ (c, d, a, b)

Configuration for 128-bit key:
(in)-I-B-I-R5×R5-I-B-I-R3×R3-I-B-I-R5×R5-I-B-I-R3×R3-I-B-I-R5×R5-
I-B-I-R3×R3-I-B-I-(out)
Configuration for 192-bit or 256-bit key:
(in)-I-B-I-R5×R5-I-B-I-R3×R3-I-B-I-R5×R5-I-B-I-R3×R3-I-B-I-R5×R5-
I-B-I-R3×R3-I-B-I-R5×R5-I-B-I-(out)

3.2 Decryption Function

The decryption function consists of the following three functions: I function,
B−1 function, and R function, each of which has a (32 bits × 4) input/output.
Among these three functions, the I function and R function is as same as one
in the Encryption function, and the B−1 functin is the inverse function of the B
function. Each function is executed in the order of I-B−1-I-R×R · · · repeatedly.

The following lists the entire configuration of the decryption function. Sym-
bols used in the configuration are as follows: (See Fig.1.)

I I function
B−1 B−1 function
R5 R function with mask = 0x55555555
R3 R function with mask = 0x33333333
− Straight connection (a, b, c, d)→ (a, b, c, d)
× Cross connection (a, b, c, d)→ (c, d, a, b)

Configuration for 128-bit key:
(in)-I-B−1-I-R3×R3-I-B−1-I-R5×R5-I-B−1-I-R3×R3-I-B−1-I-R5×R5-I-
B−1-I-R3×R3-I-B−1-I-R5×R5-I-B−1-I-(out)
Configuration for 192-bit or 256-bit key:
(in)-I-B−1-I-R5×R5-I-B−1-I-R3×R3-I-B−1-I-R5×R5-I-B−1-I-R3×R3-I-
B−1-I-R5×R5-I-B−1-I-R3×R3-I-B−1-I-R5×R5-I-B−1-I-(out)

3.3 I Function

The I function is given four 32-bit variables and four 32-bit extended keys as
inputs, and it outputs four 32-bit variables. Each input data is XORed with the
extended key. The extended keys are inputs only to the I functions.

The Block Cipher SC2000 315

Fig. 1. Encryption and Decryption function (128-bit key)

3.4 R Function

The R function is a Feistel-type data randomizing function having four 32-bit
variables as the input and the output. The R function inputs the third entry and
the fourth entry (c, d) of the input data and the constant data mask to the F
function, and it XORs the two outputs from the F function with the first entry
and the second entry (a, b) of the input data. (See Fig.2.)

F function. The F function is given two 32-bit variables and constant as
inputs, and outputs two 32-bit variables. The F function processes two variables
with the S function and the M function respectively and then processes the two
outputs with the L function.

316 T. Shimoyama et al.

6

S

S

S

S

S

S

6

5

5

5

5

6

6

5

5

5

5

32

6

6

5

5

5

5

6

S

S

S

S

S

S

6

5

5

5

5

6

6

5

5

5

5

32

6

6

5

5

5

5

M

M

32 32

32 3232 32

S

S

L mask

mask

Λ

Λ

F

Fig. 2. R function

S function. The S function splits the 32-bit input into 6 bits, 5 bits, 5 bits,
5 bits, 5 bits and 6 bits. The S function then looks up the 6-bit S-box table S6
with the original 6 bits; it looks up the 5-bit S-box table S5 with the 5 bits. The
function then aligns individual outputs in the same order to generate 32 bits.

Each S-box is a composition of an exponentiation over a Galois field and an
affine map, whose maximum differential/linear probability is 2−4, and the total
degree is 3 for S5, and is 5 for S6. See Section 4 for the elements of the tables
S5 and S6.

M function. The M function is a 32-bit input/output bitwise linear function.
The M function considers the input a as a vector of 32 entries of 1 bit and
outputs a0·M[0]⊕ · · · ⊕ a31·M[31]. See Section 4 for the elements of the matrix M.

This function is designed as an MDS matrix with respect to the S function.
The summation of the number of an input active S-box and the number of the
output active S-box correspond to the input is greater than or equal to 6.

L function. The L function is given two 32-bit variables as inputs and outputs
two 32-bit variables, and a constant. The L function outputs two data ((a ∧
mask)⊕ b,(b ∧ (mask))⊕ a) by processing two input values (a, b). As the mask
values used in the L function, there are two values: 0x55555555 and 0x33333333
for increasing the security.

Software implemenation techniques of the F function. In the description
of the F function, the S function, theM function and the L function are executed
individually in this order. However, the S and theM functions can be composed
because the M function is a linear map. In the explanation of the S function,
5-bit and 6-bit S-box tables are looked up by (6,5,5,5,5,6). However, executing
the table lookups by (6,10,10,6) or (11,10,11), which is obtained by jointing two
consecutive S-boxes into a new one, speeds up the operations because the number

The Block Cipher SC2000 317

of table lookups is reduced. In this case, creating the tableM◦S6(6-bit input, 32-
bit output) andM◦(S5S5)(10-bit input, 32-bit output) by composing two tables
can reduce the number of table lookups, leading to a speedup of operations.
Also, creating the table M◦(S6S5) and M◦(S5S6) (11-bit input, 32-bit output)
or composing the L function can realize a further speedup in the processor with
a larger cashe memory.

Implemenataion # of Table Lookups Size of Tables
(6,5,5,5,5,6) 6 1 KByte
(6,10,10,6) 4 9 KByte
(11,10,11) 3 20 KByte

S iS iS iS i

T_func

32 S-Boxes

T _func-1

a b c d

e f g h

4

4
4

4

4
4

4

4
4

4

4
4

B

B
-1

T_func

T _func-1

a b c d

e f g h

32 S-Boxes

4

4
4S

4

4
4S

4

4
4S

4

4
4S

B func() B−1 func()
t1 = b
t2 = a ∨ d
t3 = c⊕ t2
t4 = t1 ∧ t3
e = d⊕ t4
t6 = t2⊕ e
t7 = a⊕ b
t8 = t6 ∨ t7
f = c⊕ t8
t10 = c ∧ t3
t11 = t1⊕ t10
t12 = c⊕ t4
t13 = t6 ∧ t12
h = t7⊕ t13
t15 = c ∨ h
g = t11⊕ t15

t1 = c⊕ d
t2 = t1 ∨ b
t3 = t2⊕ c
t4 = t3 ∧ a
t5 = c
t6 = t5 ∨ b
t7 = t6⊕ d
e = t7⊕ t4
t8 = a⊕ t6
t9 = t8 ∨ d
g = t9⊕ b
t10 = c⊕ g
t11 = t10 ∨ t4
t12 = t11 ∧ t9
f = t12⊕ e
t13 = t6⊕ g
t14 = t13 ∧ t1
h = t14⊕ a

Fig. 3. B/B−1 function and an example of Bitslice implementation

3.5 B/B−1 Function

The B function converts four 32-bit inputs into thirty two 4-bit values with the
T function, each of which is processed with the same 4-bit S-box table S4. This
function then recover the output values into four 32-bit values and outputs those
values with the T−1 funciton. (See Fig.3.) The B−1 function uses S4i which is
the inverse of the 4-bit S-box table S4. See Section 4 for the elements of the
tables S4 and S4i.

The B/B−1 function can execute Bitslicing by expressing the S4 table in
logical form[1,2]. Bitslicing enables an aggregate processing of thirty-two S-box
lookups, leading to calculation speedup. For example, the B and B−1 function
can be expressed in logical form as shown in the Fig. 3.

318 T. Shimoyama et al.

T/T −1 function. The T function converts four 32-bit inputs to the (4,32)-
matrix, and it converts the matrix into the transposed (32,4)-matrix, and then
converts it into thirty two 4-bit data values. The T−1 function is the inverse
function of T .

MS(x) = M_func(S_func(x))

uk[0] uk[1]

MS

a[i] i={0,1,2}

i+1

MS

MS

MS(4i)

uk[2] uk[3]

MS

b[i] i={0,1,2}

i+1

MS

MS

MS(4i+1)

uk[6] uk[7]

d[i] i={0,1,2}

i+1MS(4i+3)

uk[4] uk[5]

c[i] i={0,1,2}

i+1MS(4i+2)

MS MS

MS

MS MS

MS

Intermediate-key generation function
X Y Z W

<<<

<<<

ek [n]

<<<

x y z w

1

1

1

Extended-key generation function

Fig. 4. Key Schedule

3.6 Key Schedule Specifications

The key schedule generates fifty-six 32-bit extended keys (for 128-bit key) or
sixty-four 32-bit extended keys (for 192-bit or 256-bit key) from the secret key.
The key schedule is a function consisting of the intermediate-key generation
function and the extended-key generation function. For a 256-bit key, the key
schedule splits the 256-bit secret key into eight 32-bit user keys uk[0], . . . , uk[7].
For a 192-bit key, the key schedule splits the 192-bit secret key into six 32-bit
user keys uk[0], . . . , uk[5] like as 256-bit key, then the function expands the 6
user keys to 8 user keys by uk[6] = uk[0] and uk[7] = uk[1]. In the same way,
for a 128-bit key, the key schedule splits the 128-bit secret key into four 32-
bit user keys uk[0], . . . , uk[3], then expands the 4 user keys to 8 user keys by
uk[4] = uk[0], uk[5] = uk[1], uk[6] = uk[2] and uk[7] = uk[3]. From the user
keys uk[], it generates the intermediate keys imkey[] with the intermediate-key
generation function and then executes the extended-key generation function to
generate 32-bit extended keys ek[].

Intermediate-key Generation Function. This function generates twelve 32-
bit intermediate keys a[i], b[i], c[i], d[i] for i ∈ {0, 1, 2} from eight 32-bit user keys
by the following processing.

The Block Cipher SC2000 319

for (i = 0; i < 3; i++) {
a[i] =M(S((M(S(4i)) ∆M(S(uk[0])))⊕ (M(S(uk[1])) Θ (i+ 1))))
b[i] =M(S((M(S(4i+ 1)) ∆M(S(uk[2])))⊕ (M(S(uk[3])) Θ (i+ 1))))
c[i] =M(S((M(S(4i+ 2)) ∆M(S(uk[4])))⊕ (M(S(uk[5])) Θ (i+ 1))))
d[i] =M(S((M(S(4i+ 3)) ∆M(S(uk[6])))⊕ (M(S(uk[7])) Θ (i+ 1))))

}

Extended-key Generation Function. This function generates fifty-six 32-bit
extended keys from twelve 32-bit intermediate keys for a 128-bit key; and also
generates sixty-four 32-bit extended keys for a 192-bit or 256-bit key.

if (KeyLength == 128) num ekey = 56 else num ekey = 64
for (n = 0;n < num ekey;n++) {

s = n (mod 9)
t = (n+ �n/36
) (mod 12)
X = Order[t][0] Y = Order[t][1] Z = Order[t][2]W = Order[t][3]
x = Index[s][0] y = Index[s][1] z = Index[s][2] w = Index[s][3]
ek[n] = ((X[x] n1) ∆ Y [y])⊕ (((Z[z] n1) ↓W [w]) n1)

}

4 Table

The following shows the tables used by functions for the cipher:
S6[64] = {47,59,25,42,15,23,28,39,26,38,36,19,60,24,29,56,

37,63,20,61,55, 2,30,44, 9,10, 6,22,53,48,51,11,
62,52,35,18,14,46, 0,54,17,40,27, 4,31, 8, 5,12,
3,16,41,34,33, 7,45,49,50,58, 1,21,43,57,32,13};

S5[32] = {20,26,7,31,19,12,10,15,22,30,13,14, 4,24, 9,18,
27,11, 1,21, 6,16, 2,28,23, 5, 8, 3, 0,17,29,25};

S4[16] = { 2, 5,10,12, 7,15,1,11,13, 6, 0, 9, 4, 8, 3,14};
S4i[16] = {10, 6, 0,14,12, 1, 9,4,13,11, 2, 7, 3, 8,15, 5};

M[32] = {0xd0c19225,0xa5a2240a,0x1b84d250,0xb728a4a1,
0x6a704902,0x85dddbe6,0x766ff4a4,0xecdfe128,
0xafd13e94,0xdf837d09,0xbb27fa52,0x695059ac,
0x52a1bb58,0xcc322f1d,0x1844565b,0xb4a8acf6,
0x34235438,0x6847a851,0xe48c0cbb,0xcd181136,
0x9a112a0c,0x43ec6d0e,0x87d8d27d,0x487dc995,
0x90fb9b4b,0xa1f63697,0xfc513ed9,0x78a37d93,
0x8d16c5df,0x9e0c8bbe,0x3c381f7c,0xe9fb0779};

Order Index
t 0 1 2 3 4 5 6 7 8 9 10 11
X a b c d a b c d a b c d
Y b a d c c d a b d c b a
Z c d a b d c b a b a d c
W d c b a b a d c c d a b

s 0 1 2 3 4 5 6 7 8
x 0 1 2 0 1 2 0 1 2
y 0 1 2 1 2 0 2 0 1
z 0 1 2 0 1 2 0 1 2
w 0 1 2 1 2 0 2 0 1

320 T. Shimoyama et al.

Table 1. Distribution tables for differential/linear approximations of S4

differential linear
∆Out

∆In 0 1 2 3 4 5 6 7 8 9 a b c d e f
0x0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0
0x2 0 0 0 0 2 0 4 2 2 2 0 0 0 2 0 2
0x3 0 0 0 0 2 0 2 0 0 0 2 2 2 0 4 2
0x4 0 0 0 2 0 2 0 4 0 2 2 2 0 0 2 0
0x5 0 2 4 0 0 2 0 0 0 0 2 0 0 4 2 0
0x6 0 2 0 4 2 0 0 0 2 0 0 0 0 2 4 0
0x7 0 0 0 2 2 4 0 0 2 2 0 2 0 2 0 0
0x8 0 0 2 4 0 4 0 2 0 0 2 0 0 0 0 2
0x9 0 0 0 2 2 0 0 0 4 0 0 2 2 0 0 4
0xa 0 2 2 2 2 2 0 2 0 0 2 0 2 0 0 0
0xb 0 2 0 0 0 2 0 0 0 4 0 2 4 0 0 2
0xc 0 2 4 0 0 0 2 0 0 4 2 0 0 2 0 0
0xd 0 4 2 0 2 0 0 0 2 0 2 2 0 0 0 2
0xe 0 2 0 0 2 0 2 2 0 0 0 2 2 2 2 0
0xf 0 0 2 0 0 0 4 2 2 0 0 0 2 0 2 2

ΓOut
ΓIn 0 1 2 3 4 5 6 7 8 9 a b c d e f
0x0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 0 0 0 2 2 -2 -2 4 0 0 4 2 -2 2 -2
0x2 0 0 0 0 -4 4 0 0 2 2 -2 -2 -2 -2 -2 -2
0x3 0 0 0 0 -2 -2 -2 -2 -2 2 -2 2 0 4 0 -4
0x4 0 2 2 -4 0 2 -2 0 0 2 -2 0 0 2 2 4
0x5 0 2 -2 0 2 4 0 2 -4 2 2 0 2 0 0 -2
0x6 0 -2 -2 -4 0 -2 -2 4 2 0 0 -2 2 0 0 -2
0x7 0 -2 2 0 2 0 0 -2 -2 0 -4 -2 4 -2 -2 0
0x8 0 -2 -2 0 0 2 -2 -4 0 -2 2 -4 0 2 2 0
0x9 0 2 -2 -4 2 0 4 -2 0 -2 -2 0 -2 0 0 -2
0xa 0 -2 -2 0 0 2 2 0 2 0 0 2 2 4 -4 2
0xb 0 2 -2 4 2 0 0 2 2 0 -4 -2 0 2 2 0
0xc 0 4 0 0 0 0 -4 0 0 -4 0 0 0 0 -4 0
0xd 0 0 -4 0 2 -2 -2 -2 0 4 0 0 -2 -2 -2 2
0xe 0 0 4 0 4 0 0 0 2 2 2 -2 -2 2 -2 -2
0xf 0 4 0 0 -2 -2 2 -2 2 2 2 -2 4 0 0 0

(#{In|∆In→ ∆Out}) (#{In|In·ΓIn⊕Out·ΓOut = 0} − 8)

5 Security Evaluation Policy

Since differential attacks and linear attacks were presented, designers of block
cipher need to consider the security specifically against these attacks among
standard attacks, and trials to show the security against these attacks by several
methods have been made.

While a method of finding the theoretical upper bounds of security can show
the security of cipher theoretically, such a method has certain constraints in the
structure of the cipher to apply the theory. The block cipher SC2000 cannot be
directly applied those techniques because the cipher uses a combined structure
of the Feistel structure and the SPN structure. It is also difficult to construct a
new technique to evaluate the security of the structure of the cipher. Therefore,
we employ the following method to show the security of the cipher:

Search for characteristics that give differential probability or linear probabil-
ity value greater than or equal to a certain threshold value, and then show
that such characteristics do not exist.

6 The Security against Differential Attack

In this session, we describe an evaluation of the security against differential
attack. Here we study the cases where the input differential of the F function in
the R function is repeated by two rounds by the effect of the B function. Since
the structure of SC2000 is constructed by the iteration of 3-round non-linear
functions B-R-R, it is expected that the effective differential characteristics are
obtained from the concatenation of 3-round characteristics.

In the B function, each S-box S4 may sometimes give effects other than
exchanging upper and lower 2-bit differentials. For example, in the differential

The Block Cipher SC2000 321

Table 2. Differential characteristic probabilities for each round

round 1 2 3 4 5 6 7 8 9 10 11 12 13
B R5 R5 B R3 R3 B R5 R5 B R3 R3 B

active S-box 5 0 4 5 0 4 5 0 4 5 0 4 5
probability(log2) -15 -15 -33 -48 -48 -66 -81 -81 -99 -114 -114 -132 -147

distribution table for S4, (0x6,0x8)- and (0x2,0x8)-entry have nonzero probabil-
ities. (See Table 1.) Therefore, the B function in which thirty-two S-boxes S4
are aligned may possibly have the following input/output differential:

(∆a, 0, 0, 0) B←− (∆c,∆c,∆a, 0),
∆d ≺ ∆a,∆c = mask ∧ ∆d, where mask is the constant value used in the R
function, and ∆d ≺ ∆a means ∆d ∨ ∆a = ∆a. By using this, the following
differential may pass through: (see Figure 5.)

(∆a, 0, 0, 0) B←− (∆c,∆d,∆a, 0)
(0, 0) F←− (0, 0)

(∆c,∆d) F←− (∆a, 0)
(∆a, 0, 0, 0) B←− (∆c,∆d,∆a, 0).

Fig. 5. 3-round cycle differential/linear characteristics

Since the (0xe,0x8)-entry of the differential distribution table is zero, ∆c
must be 0. Also in the example above, we set lowermost 32 bits in the input
differential of the F function zero, but it is also necessary to search for cases
where both upper and lower bits of the input differential of the F function are
nonzero. This types of characteristics may be formed depending on the entry of
the differential distribution table of S4.

As a result of calculations of differentials in this form by computer, we ob-
tained the following pattern which is one of the best differential characteristic
whose probability is 2−33 for 3-round B-R-R described above. (See Table 2.)

322 T. Shimoyama et al.

Table 3. Linear characteristic probabilities for each round

round 1 2 3 4 5 6 7 8 9 10 11 12 13
B R5 R5 B R3 R3 B R5 R5 B R3 R3 B

active S-box 6 4 0 6 4 0 6 4 0 6 4 0 6
probability(log2) -16 -34 -34 -50 -68 -68 -84 -102 -102 -118 -136 -136 -152

(0x08090088, 0, 0, 0) B←− (0, 0x00080008, 0x08090088, 0) 2−15

(0, 0) F←− (0, 0) 1

(0, 0x00080008) F←− (0x08090088, 0) 2−18.

The differential attack can be applicable to the 13-round SC2000 with 2117

data and 2162 computational complexity for deriving a part of the extended
keys by using the 11-round (2nd to 12th round) differential characteristic with
probability 2−117 described above and by using two-round elimination technique.
Although it is still an open problem whether there exist the effective differential
patterns for more rounds or not, we believe that the cipher SC2000 with each of
19-round for 128-bit key and 22-round for other keys is secure against differential
attacks.

7 The Security against Linear Attacks

This section describes an evaluation of the security against linear attacks. The
symbols used in the evaluation of the security against differential attacks are
also used in this session. In the same reason as in the differential searches, we
will focus on the iteration of the forms of 3-round linear characteristics.

From the linear distribution table for S4, (0x2,0x8)-, (0x2,0x9)-, (0x3,0xd)-
entry have nonzero probabilities. (See Table 1.) Therefore, the B function in
which thirty-two S-boxes S4 are aligned may possibly have the following in-
put/output linear:

(Γd, Γc, 0, Γa) B←− (0, 0, Γd, Γc),
Γ c = mask ∧ Γd, Γa ≺ Γd, where mask is the constant value used in the R
function. By using this, the following linear characteristic patterns may pass
through: (See Figure 5.)

(Γd, Γc, 0, Γa) B←− (0, 0, Γd, Γc)
(Γd, Γc) F←− (0, Γa)

(0, 0) F←− (0, 0)
(Γd, Γc, 0, Γa) B←− (0, 0, Γd, Γc).

As a result of search of linear characteristic patterns of this form by using a
computer, we found that the following 3-round linear characteristic is one of the
best pattern, whose linear probability is 2−34 for 3-round. (See Table 3.)

The Block Cipher SC2000 323

Table 4. Lower bound of total degrees of algebraic relationals and of numbers of
terms in polynomial representations about input bits in n-round input/output bits

of rounds 1 2 3 4 5 6 7
Total degrees 2 4 8 16 32 64 128

of rounds 1 2 3 4 5 6
of terms 23 29 227 28122432729

total degree of algebraic relational number of term in polynomial

(0x08188810, 0x00100010, 0, 0x08100810) B←− (0, 0, 0x08188810, 0x00100010) 2−16

(0x08188810, 0x00100010) F←− (0, 0x08100810) 2−18

(0, 0) F←− (0, 0) 1.

The linear attack can be applicable for the 13-round SC2000 with 2120 data
and 2180 computational complexity for deriving a part of the extended keys by
using the 11-round (2nd to 12th round) linear characteristic with probability
2−120 described above by using two-round elimination technique. Although it is
still an open problem whether there exist the effective linear patterns for more
rounds or not, we believe that the cipher SC2000 with each of 19-round for
128-bit key and 22-round for other keys is secure against linear attacks.

8 The Security against Higher Order Differential Attack
and Interpolation Attack

The cipher uses three types of S-boxes: S4, S5 and S6. For all of these S-boxes,
nonlinear functions having three or higher degrees are used. In addition, it has
been confirmed that algebraic equations for the input/output have two or higher
degrees. Therefore, the increase in degrees by two or more per round is unavoid-
able for the improved higher order differential attacks. Accordingly, it is shown
that the minimum degree of algebraic equations for the input/output of n rounds
is 2n or higher. As a result, it is found that the number of required plaintexts
exceeds 2128 after at most seven rounds.

Here we study a method of finding extended keys by using linear equations,
considering Boolean polynomials as vectors of a linear space over GF (2). Assume
that the number of terms in a polynomial is estimated by 2s, where s is the
degree of the polynomial (considering that at least two key bits affect). Since
the degree of a polynomial increases three per round, the number of terms at
the output of the n-th round is estimated as s = (23)n or greater. Therefore, the
complexity exceeds 2243 for five rounds, and it exceeds 2729 for 6 rounds. From the
descriptions above, it is assured that improved higher order differential attacks
are not successful if the number of rounds is 5 + 5 + 7 = 17 or greater for the
128-bit key, or 6 + 6 + 7 = 19 or greater for the 192-bit or 256-bit keys.

The interpolation attack is effective against ciphers that use simple algebraic
functions. However, interpolation attacks are often only workable against ciphers
whose round functions have very low algebraic degree. The cipher SC2000 is a

324 T. Shimoyama et al.

combination of Feistel structure and SPN structure, and uses three kind of S-
boxes. These combination of the many types of algebraic structures which are
used in SC2000 should help increase the degree after a few rounds. Therefore,
we believe that SC2000 is secure against interpolation attacks.

9 Study on Collisions of Intermediate-Keys

In the intermediate key generation function, the following properties concerning
existence of collisions are satisfied: Let ai (i = 0, 1, 2) be intermediate keys from
an 8-tuple of user keys k = (k0, ..., k7) and a′

i (i = 0, 1, 2) from k′ = (k′
0, ..., k

′
7).

Then the following holds: k0 �= k′
0 or k1 �= k′

1 ⇒ a0 �= a′
0 or a1 �= a′

1.
For intermediate keys bi, ci, di (i = 0, 1, 2), the same property is satisfied.

This property indicates that no collisions occur in the process of generating
intermediate keys from the user keys.

Here we prove the property. Let C0 = M(S(0)), C1 = M(S(4)), k̃0 =
M(S(k0)), k̃′

0 = M(S(k′
0)), k̃1 = M(S(k1)),and k̃′

1 = M(S(k′
1)). The i-th bit

of variable x is expressed as xi. From the conditions, we have (C0 + k̃0)⊕ k̃1 =
(C0 + k̃′

0)⊕ k̃′
1, (C1 + k̃0)⊕ (2k̃1) = (C1 + k̃′

0)⊕ (2k̃′
1).

Here we use induction on i concerning i-th bit. For the 31st bit (the least
significant bit), the following is proven by the latter equation: C1,31 ⊕ k̃0,31 =
C1,31 ⊕ k̃′

0,31, that is, k̃0,31 = k̃′
0,31, C0,31 ⊕ k̃0,31 ⊕ k̃1,31 = C0,31 ⊕ k̃′

0,31 ⊕ k̃′
1,31,

that is, k̃1,31 = k̃′
1,31. Assume that for any j greater than or equal to i+ 1, the

euqations k̃0,j = k̃′
0,j , k̃1,j = k̃′

1,j hold. Then for i-th bit, the following equation
holds:

C1,i ⊕ k̃0,i ⊕ µ(C1,31, ..., C1,i+1, k̃0,31, ..., k̃0,i+1)
= C1,i ⊕ k̃′

0,i ⊕ µ(C1,31, ..., C1,i+1, k̃0,31, ..., k̃0,i+1),
where µ is a Boolean function. From the equation, k̃0,i = k̃′

0,i is proven, and in
the same way k̃1,i = k̃′

1,i is proven.

10 Study on Some of Weak Keys against Slide Attack

When all values of the 12 intermediate keys ai, bi, ci, di, that are generated from
user keys are the same, all values of the extended key Ki that are generated in
the extended-key generation function become the same. This means that they
become weak keys against slide attacks. The following is a study on whether such
weak keys exist: We consider the conditions that satisfy the following equation:
a0 = a1 = a2.

By considering the equations above as 32× 2 bitwise Boolean equations, we
induced algebraic equations of constraints about C0 =M(S(0)), C1 =M(S(4)),
C2 = M(S(8)), by using a computer algebra system. The relational Boolean
equations below are parts of such equations. Existence of k0 and k1 that satisfies
a0 = a1 = a2 requires that all of the following Boolean equations must be
satisfied:

The Block Cipher SC2000 325

Table 5. Processing speed in software

(Unit clock cycles / 1 block)
Name Encode Decode ExKey
key size 128 192 256 128 192 256 128 192 256
SPARC 274 323 323 277 317 317 340 393 407
Pentium 383 438 438 403 460 460 427 487 507
Athlon 319 361 361 332 377 377 456 478 476
Alpha 238 298 298 238 298 298 288 327 327

Name CPU (clock) Language Implementation
En/Decode ExtKey (See Section 3.4.)

SPARC UltraSAPRC II (400MHz) C C (6,10,10,6)
Pentium PentiumIII (550MHz) asm. C (6,10,10,6)
Athlon Athlon (900MHz) asm. C (11,10,11)
Alpha Alpha21264 (500MHz) C C (11,10,11)

Table 6. Performance on Intel 8051 and in JAVA language

Performance in Intel 8051 (128bit key only)
Unit: msec / 1 block

Name Encode Decode ExKey
8051 8.133 8.609 21.666

Size of code: 1597Byte
Size of static data : 1154Byte

Performance of Encryption in JAVA
Unit: clock cycles / 1 block

Name Encode Decode ExKey Implementation
key length 128 192 256 128 192 256 128 192 256 (See Section 3.4.)

JAVA 3998 4599 4604 4114 4748 4742 14204 15840 15835 (6,5,5,5,5,6)
JAVA 3359 3860 3878 3453 3966 3976 13538 15140 15129 (6,10,10,6)
Binary size: 1200Byte, ROM : 1408Byte (6,5,5,5,5,6) 32790Byte(6,10,10,6)




C0,31 ⊕ C2,31 = 0, C0,30 ⊕ C1,31 ⊕ C2,30 ⊕ C2,31 = 0,
(C1,31 ⊕ C2,31 ⊕ 1)C0,29 ⊕ (C1,31 ⊕ C2,31 ⊕ 1)C1,30 ⊕ (C2,29 ⊕ C2,30)C1,31
⊕(C2,31 ⊕ 1)C2,29 ⊕ (C2,31 ⊕ 1)C2,30 = 0,

· · ·
Now, it can be confirmed that the constant parameters (C0, C1, C2) used in

the intermediate key generation function, where

(C0, C1, C2) ∈ {(M(S(x)),M(S(x+ 4)),M(S(x+ 8)))}x=0,1,2,3

do not satisfy the system of equations above. Therefore, it can be said that no
user key having intermediate keys with the same value exists.

326 T. Shimoyama et al.

Table 7. Evaluation of hardware implementation

Key size Gate size Throughput
Large† 128-bit 226K 1.26Gbps
Large 128-bit 262K 1.25Gbps

192-/256-bit 262K 1.08Gbps
Medium 128-bit 63K 964Mbps

192-/256-bit 63K 844Mbps
Small 128-bit 33K 264Mbps

192-/256-bit 33K 231Mbps
†: exclusive use for 128-bit key
Verilog-HDL, 0.25µm CMOS ASIC (See [6].)

11 Evaluation of Implementation

In this section, we evaluate the processing speed of the data randomization and
key schedule of the cipher.

Table 5 shows the software processing speed for encryption (Encode), de-
cryption (Decode), and key schedule processing (ExKey) on the four CPUs,
UltraSPARC II, PentiumIII, Athlon and Alpha21264. Each of the processing
speed is measured by clock cycles per one block encryption. For the fast soft-
ware implementation, the techniques described in Section 3.4 are used. These
measurements show the maximum performances which we obtained.

Table 6 shows the software performance of SC2000 on 8-bit CPU measuring
by Intel 8051 simulator, and on implementing in JAVA language. For Intel 8051
CPU, Table 6 only shows real timing data (not clock cycles) of the processing
functions, since we do not know the ratio between the number of clocks of CPU
and the number of cycles of processing and we can not convert from timing
data to clock cycles. We note that the performance of the key schedule in our
JAVA implementation is measured on the processing speed for swapping all
the extended keys without re-construction of the structure of the encryption
function.

Table 7 shows our evaluations in hardware implementations. There are three
kinds of implementations, Large, Medium and Small. These evaluations of hard-
ware implementation here, Large, Medium and Small, are constructed by giving
priorities to the speed of processing, the ratio of the speed to the gate size and
the gate size, respectively. The throughputs are measured by bit per second. The
total number of gates includes the number of gates for the data randomization
and for the key schedule.

References

1. E.Biham, “A Fast New DES Implementation in Software,” Fast Software Encryp-
tion, 4th International Workshop Proceedings, Springer-Verlag LNCS 1267, 1997,
pp.260-272.

The Block Cipher SC2000 327

2. E.Biham, R.Anderson, and L.Knudsen, “Serpent: A New Block Cipher Proposal,”
Fast Software Encryption, 5th International Workshop Proceedings, Springer-
Verlag LNCS 1372, 1998, pp.222-238.

3. B.Gladman, “Serpent S Boxes as Boolean Functions,” http://www.btinternet.
com/˜brian.gladman/cryptography technology/serpent/index.html, 2000.

4. J.Daemen, L.Knudsen. V.Rijmen, “The Block Cipher Square,” FSE4, LNCS
pp.149-165, 1997.

5. J.Daemen, V.Rijmen, “AES Proposal: Rijndael,” NIST AES Proposal, Jun 1998.
6. Fujitsu, “CE71 Series,” DATA SHEET DS06-20108-1, http://edevice.fujitsu.

com/fj/CATALOG/AD00/00-00001/10e-5b-2.html
7. M.Kanda, Y.Takashima, T.Matsumoto, K.Aoki, K.Ohta “A strategy for construct-

ing fast found functions with practical security agaist differential and linear crypt-
analysis,” Selected Areas in Cryptography, SAC’98, LNCS 1556, pp.264-279, 1998.

8. K.Nyberg and L.R.Knudsen, “Provable Security Against Differential Cryptanaly-
sis,” Journal of Cryptology, v.8, n.1, 1995, pp.27-37.

9. D.A.Osvik “Speeding up Serpent,” Proceedings of The Third AEC Conference, pp
317-329.

10. B.Schneier, J.Kelsey, D.Whiting, D.Wagner, C.Hall, N.Ferguson, “The Twofish
Encryption Algorithm,” John Wiley and Sons, Inc. New York, 1999.

	Introduction
	Preliminary
	Algorithm Specifications
	Encryption Function
	Decryption Function
	I Function
	R Function
	B/B^{-1} Function
	Key Schedule Specifications

	Table
	Security Evaluation Policy
	The Security against Differential Attack
	The Security against Linear Attacks
	The Security against Higher Order Differential Attack and Interpolation Attack
	Study on Collisions of Intermediate-Keys
	Study on Some of Weak Keys against Slide Attack
	Evaluation of Implementation

