
Efficient Algorithms for Computing Differential
Properties of Addition

Helger Lipmaa1 and Shiho Moriai2

1 Helsinki University of Technology, Department of Computer Science and Engineering
P.O.Box 5400, FI-02015 HUT, Espoo, Finland

helger@tml.hut.fi
2 NTT Laboratories

1-1 Hikari-no-oka, Yokosuka, 239-0847 Japan
shiho@isl.ntt.co.jp

Abstract. In this paper we systematically study the differential properties
of addition modulo 2n. We derive Θ(log n)-time algorithms for most of the
properties, including differential probability of addition. We also present log-time
algorithms for finding good differentials. Despite the apparent simplicity of mod-
ular addition, the best known algorithms require naive exhaustive computation.
Our results represent a significant improvement over them. In the most extreme
case, we present a complexity reduction from Ω(24n) to Θ(log n).

Keywords: Modular addition, differential cryptanalysis, differential probability,
impossible differentials, maximum differential probability.

1 Introduction

One of the most successful and influential attacks against block ciphers is Differential
Cryptanalysis (DC), introduced by Biham and Shamir in 1991 [BS91a]. For many of
the block ciphers proposed since then, provable security against DC (defined by Lai,
Massey and Murphy [LMM91] and first implemented by Nyberg and Knudsen [NK95])
has been one of the primary criteria used to confirm their potential quality.

Unfortunately, few approaches to proving security have been really successful. The
original approach of [NK95] has been used in designing MISTY and its variant KASUMI
(the new 3GPP block cipher standard). Another influential approach has been the “wide
trail” strategy proposed by Daemen [Dae95], applied for example in the proposed AES,
Rijndael. The main reason for the small number of successful strategies is the complex
structure of modern ciphers, which makes exact evaluation of their differential properties
infeasible. This has, unfortunately, led to a situation where the security against DC is
often evaluated by heuristic methods.

We approach the above problem by using the bottom-up methodology. That is, we
evaluate many sophisticated differential properties of one of the most-used “non-trivial”
block cipher cornerstones, addition modulo 2n for n ≥ 1. We hope that this will help
to evaluate the differential properties of larger composite cipher parts like the Pseudo-
Hadamard Transform, with the entire cipher being the final goal. The algorithms pro-
posed here will enable the advanced cryptanalysis of block ciphers. We hope that our

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 336–350, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Efficient Algorithms for Computing Differential Properties of Addition 337

results will facilitate cryptanalysis of such stream ciphers and hash functions that use
addition and XOR at the same time.

Importance of Differential Properties of Addition. Originally, DC was considered
with respect to XOR, and was generalized to DC with respect to an arbitrary group
operation in [LMM91]. In 1992, Berson [Ber92] observed that for many primitive op-
erations, it is significantly more difficult to apply DC with respect to XOR than with
respect to addition modulo 232. Most interestingly, he classified DC of addition modulo
2n itself, with n sufficiently big, with respect to XOR to be hard to analyze, given the
(then) current state of theory.

Until now it has seemed that the problem of evaluating the differential properties of
addition with respect to XOR is hard. Hereafter, we omit the “with respect to XOR” and
take the addition to be always modulo 2n. The fastest known algorithms for computing
the differential probability of addition DP+(α, β �→ γ):=Px,y[(x + y) ⊕ ((x ⊕ α) +
(y ⊕ β)) = γ] is exponential in n. The complexity of the algorithms for the maximum
differential probability DP+

max(α, β):= maxγ DP+(α, β �→ γ), the double-maximum
differential probability DP+

2max(α):= maxβ,γ DP+(α, β �→ γ), and many other differ-
ential properties of addition are also exponential in n.

With small n (e.g., n = 8 or even with n = 16), exponential-in-n computation is
feasible, as demonstrated in the cryptanalysis of FEAL by Aoki, Kobayashi and Moriai
in [AKM98]. However, this is not the case when n ≥ 32 as used in the recent 128-bit
block ciphers such as MARS, RC6 and Twofish. In practice, if n ≥ 32, both cipher
designers and cryptanalysts have mostly made use of only a few differential properties
of addition. (For example, letting x0 be the least significant bit of x, they often use the
property that α0⊕β0⊕γ0 = 0.) It means that block ciphers that employ both XOR and
addition modulo 2n are hard to evaluate the security against DC due to the lack of theory.
This has led to the general concern that mixed use of XOR and modular addition might
add more confusion (in Shannon’s sense) to a cipher but “none has yet demonstrated
to have a clear understanding of how to produce any proof nor convincing arguments
of the advantage of such an approach” [Knu99]. One could say that they also add more
confusion to the cipher in the layman’s sense.

There has been significant ongoing work on evaluating the security of such “confus-
ing” block ciphers against differential attacks. Some of these papers have also somewhat
focused on the specific problem of evaluating the differential properties of addition. The
full version of [BS91b] treated some differential probabilities of addition modulo 2n

and included a few formulas useful to compute DP+, but did not include any concrete
algorithms nor estimations of their complexities. The same is true for many later papers
that analyzed ciphers like RC5, SAFER, and IDEA. Miyano [Miy98] studied the sim-
pler case with one addend fixed and derived a linear-time algorithm for computing the
corresponding differential probability.

Our Results. We develop a framework that allows the extremely efficient evaluation of
many interesting differential properties of modular addition. In particular, most of the
algorithms described herein run in time, sublinear inn. Since this would be impossible in
the Turing machine model, we chose to use a realistic unit-cost RAM (Random Access

338 H. Lipmaa and S. Moriai

Machine) model, which executes basic n-bit operations like Boolean operations and
addition modulo 2n in unit time, as almost all contemporary microprocessors do.

The choice of this model is clearly motivated by the popularity of such micropro-
cessors. Still, for several problems (although sometimes implicitly) we also describe
linear-time algorithms that might run faster in hardware. (Moreover, the linear-time
algorithms are usually easier to understand and hence serve an educational purpose.)
Nevertheless, the RAM model was chosen to be “minimal”, such that the described al-
gorithms would be directly usable on as many platforms as possible. On the other hand,
we immediately demonstrate the power of this model by describing some useful log-time
algorithms (namely, for the Hamming weight, all-one parity and common alternation
parity). They become very useful later when we investigate other differential properties.
One of them (for the common alternation parity) might be interesting by itself; we have
not met this algorithm in the literature.

After describing the model and the necessary tools, we show that DP+ can be com-
puted in timeΘ(log n) in the worst-case. The corresponding algorithm has two principal
steps. The first step checks in constant-time whether the differential δ = (α, β �→ γ) is
impossible (i.e., whether DP+(δ) = 0). The second step, executed only if δ is possible,
computes the Hamming weight of an n-bit string in time Θ(logn). As a corollary, we
prove an open conjecture from [AKM98].

The structure of the described algorithm raises an immediate question of what is the
density of the possible differentials. We show that the event DP+(δ) �= 0 occurs with the

negligible probability 1
2 ·

(7
8

)n−1
(This proves an open conjecture stated in [AKM98]).

That is, the density of possible differentials is negligible, so DP+ can be computed in
time Θ(1) in the average-case. These results can be further used for impossible differen-
tial cryptanalysis, since the best previously known general algorithm to find non-trivial
impossible differentials was by exhaustive search. Moreover, the high density of im-
possible differentials makes differential cryptanalysis more efficient; most of the wrong
pairs can be filtered out [BS91a,O’C95].

Furthermore, we compute the explicit probabilities Pδ[DP+(δ) = i] for any i, 0 ≤
i ≤ 1. This helps us to compute the distribution of the random variableX : δ �→ DP+(δ),
and to create formulas for the expected value and variance of the random variable X .
Based on this knowledge, one can easily compute the probabilities that P[X > i] for
any i.

For the practical success of differential attacks it is not always sufficient to pick a
random differential hoping it will be “good” with reasonable probability. It would be nice
to find good differentials efficiently in a deterministic way. Both cipher designers and
cryptanalysts are especially interested in finding the “optimal” differentials that result
in the maximum differential probabilities and therefore in the best possible attacks.
For this purpose we describe a log-time algorithm for computing DP+

max(α, β) and a γ
that achieves this probability. Both the structure of the algorithm (which makes use of
the all-one parity) and its proof of correctness are nontrivial. We also describe a log-
time algorithm that finds a pair (β, γ) that maximizes the double-maximum differential
probability DP+

2max(α). We show that for many nonzero α-s, DP+
2max(α) is very close

to one. A summary of some of our results is presented in Table 1.

Efficient Algorithms for Computing Differential Properties of Addition 339

Table 1. Summary of the efficiency of our main algorithms

DP+ DP+
max DP+

2max

Previous result Ω
(
22n

)
Ω

(
23n

)
Ω

(
24n

)

Our result Θ(log n) (worst-case), Θ(1) (average) Θ(log n) Θ(log n)

Road map. We give some preliminaries in Sect. 2. Section 3 describes a unit-cost
RAM model, and introduces the reader to several efficient algorithms that are crucial
for the later sections. In Sect. 4 we describe a log-time algorithm for DP+. Section 5
gives formulas for the density of impossible differentials and other statistical properties
of DP+. Algorithms for maximum differential probability and related problems are
described in Sect. 6.

2 Preliminaries

Let Σ = {0, 1} be the binary alphabet. For any n-bit string x ∈ Σn, let xi ∈ Σ be the i-
th coordinate of x (i.e., x =

∑n−1
i=0 xi2i). We always assume that xi = 0 if i �∈ [0, n−1].

(That is, x =
∑∞

−∞ xi2i.)
Let ⊕, ∨, ∧ and ¬ denote n-bit bitwise “XOR”, “OR”, “AND” and “negation”,

respectively. Let x� i (resp. x� i) denote the right (resp. the left) shift by i positions
(i.e., x� i:=�x/2i� and x� i:=2ix mod 2n). Addition is always performed modulo
2n, if not stated otherwise. For any x, y and z we define eq(x, y, z):=(¬x⊕y)∧(¬x⊕z)
(i.e., eq(x, y, z)i = 1 ⇐⇒ xi = yi = zi) and xor(x, y, z):=x⊕ y ⊕ z. For any n, let
mask(n):=2n − 1. For example, ((¬0)�1)0 = 0.

Addition modulo 2n. The carry, carry(x, y):=c ∈ Σn, x, y ∈ Σn, of addition x+y is
defined recursively as follows. First, c0:=0. Second, ci+1:=(xi∧yi)⊕(xi∧ci)⊕(yi∧ci),
for every i ≥ 0. Equivalently, ci+1 = 1 ⇐⇒ xi + yi + ci ≥ 2. (That is, the carry bit
ci+1 is a function of the sum xi + yi + ci.) The following is a basic property of addition
modulo 2n.

Property 1. If (x, y) ∈ Σn ×Σn, then x + y = x⊕ y ⊕ carry(x, y).

Differential Probability of Addition. We define the differential of addition modulo
2n as a triplet of two input and one output differences, denoted as (α, β �→ γ), where
α, β, γ ∈ Σn. The differential probability of addition is defined as follows:

DP+(δ) = DP+(α, β �→ γ):=Px,y[(x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ] .

That is, DP+(δ):=�{x, y : (x + y)⊕ ((x⊕ α) + (y ⊕ β)) = γ}/22n. We say that δ is
impossible if DP+(δ) = 0. Otherwise we say that δ is possible. It follows directly from
Property 1 that one can rewrite the definition of DP+ as follows:

Lemma 1. DP+(α, β �→ γ) = Px,y[carry(x, y)⊕carry(x⊕α, y⊕β) = xor(α, β, γ)].

340 H. Lipmaa and S. Moriai

Probability Theory. Let X be a discrete random variable. Except for a few explicitly
mentioned cases, we always deal with uniformly distributed variables. We note that in the
binomial distribution, P[X = k] = pk(1− p)n−k

(
n
k

)
=:b (k;n, p), for some fixed 0 ≤

p ≤ 1 and any k ∈ ZZn+1. From the basic axioms of probability,
∑n

k=0 b (k;n, p) = 1.
Moreover, the expectation E[X] =

∑n
k=0 k · P[X = k] of a binomially distributed

random variable X is equal to np, while the variance Var[X] = E[X2] − E[X]2 is
equal to np(1− p).

3 RAM Model and Some Useful Algorithms

In the n-bit unit-cost RAM model, some subset of fixed n-bit operations can be executed
in constant time. In the current paper, we specify this subset to be a small set of n-bit
instructions, all of which are readily available in the vast majority of contemporary
microprocessors: Boolean operations, addition, and the constant shifts. We additionally
allow unit-cost equality tests and (conditional) jumps. On the other hand, our model does
not include table look-ups or (say) multiplications. Such a restriction guarantees that
algorithms efficient in this model are also efficient on a very broad class of platforms,
including FPGA and other hardware. This is further emphasized by the fact that our
algorithms need only a few bytes of extra memory and thus a very small circuit size in
hardware implementations.

Many algorithms that we derive in the current paper make heavy use of the three
non-trivial functions described below. The power of our minimal computational model
is stressed by the fact that all three functions can be computed in time Θ(logn).

Hamming Weight. The first function is the Hamming weight function (also known
as the population count or, sometimes, as sideways addition) wh: For x =

∑n−1
i=0 xi2i,

wh(x) =
∑n−1

i=0 xi, i.e., wh counts the “one” bits in an n-bit string. In the unit-cost RAM
model, wh(x) can be computed in Θ(logn) steps. Many textbooks contain (a variation
of) the next algorithm that we list here only for the sake of completeness.

INPUT: x
OUTPUT: wh(x)

1. x← x− ((x�1) ∧ 0x55555555L);
2. x← (x ∧ 0x33333333L) + ((x�2) ∧ 0x33333333L);
3. x← (x + (x�4)) ∧ 0x0F0F0F0FL;
4. x← x + (x�8);
5. x← (x + (x�16)) ∧ 0x0000003FL;
6. Return x;

Additional time-space trade-offs are possible in calculating the Hamming weight. If
n = cm, then one can precompute 2c values of wh(i), 0 ≤ i < 2c, and then find wh(x)
by doing m = n/c table look-ups. This method is faster than the method described in
the previous paragraph if m ≤ log2 n, which is the case if n = 32 and m ∈ {8, 16}.
However, it also requires more memory. While we do not discuss this method hereafter,
our implementations use it, since it offers better performance on 32-bit processors.

Efficient Algorithms for Computing Differential Properties of Addition 341

x = 00001000001100110000010101010100 ,

y = 01000000000000010110110001110100 ,

aop(x) = 00001000001000100000010101010100 ,

aopr(x) = 00001000000100010000010101010100 ,

C(x, y) = 00000000000000001000001001001010 ,

Cr(x, y) = 00000000000000010000010010010100 .

Fig. 1. A pair (x, y) with corresponding values aop(x), aopr(x), C(x, y) and Cr(x, y). Here,
for example, aop(x)27 = 1 since 1 = x27 �= x28 and 28 − 27 = 1 is odd. On the other hand,
Cr(x, y)4 = 1 since x4 = y4 �= x3 = y3 �= x2 = y2 �= x1 = y1 = x0 = y0, and 4− 0 is even.
Since 	5 = 0, we could have taken also C(x, y)5 = 1

Interestingly, many ancient and modern power architectures have a special machine-
level “cryptanalyst’s” instruction for wh (mostly known as the population count instruc-
tion): SADD on the Mark I (sic), CXi Xj on the CDC Cyber series, Ai PSj on the Cray
X-MP, VPCNT on the NEC SX-4, CTPOP on the Alpha 21264, POPC on the Ultra SPARC,
POPCNT on the Intel IA64, etc. In principle, we could incorporate in our model a unit-
time population count instruction, then several later presented algorithms would run in
constant time. However, since there is no population count instruction on most of the
other architectures (especially on the widespread Intel IA32 platform), we have decided
not include it in the set of primitive operations. Moreover, the complexity of popula-
tion count does not significantly influence the (average-case) complexity of the derived
algorithms.

All-one and Common Alternation Parity. The second and third functions, important
for several derived algorithms (more precisely, they are used in Algorithm 4 and Al-
gorithm 5), are the all-one and common alternation parity of n-bit strings, defined as
follows. (Note that while the Hamming weight has very many useful applications in
cryptography, the functions defined in this section have never been, as far as we know,
used before for any cryptographic or other purpose.)

The all-one parity of an n-bit number x is another n-bit number y = aop(x) s.t.
yi = 1 iff the longest sequence of consecutive one-bits xixi+1 . . . xi+j = 11 . . . 1 has
odd length.

The common alternation parity of two n-bit numbers x and y is a function C(x, y)
with the next properties: (1) C(x, y)i = 1, if �i is even and non-zero, (2) C(x, y)i = 0,
if �i is odd, (3) unspecified (either 0 or 1) if �i = 0, where �i is the length of the longest
common alternating bit chain xi = yi �= xi+1 = yi+1 �= xi+2 = yi+2 . . . �= xi+�i =
yi+�i , where i + �i ≤ n − 1. (In both cases, counting starts with one. E.g., if xi = yi

but xi+1 �= yi+1 then �i = 1 and C(x, y)i = 0.) W.l.o.g., we will define

C(x, y):=aop(¬(x⊕ y) ∧ (¬(x⊕ y)�1) ∧ (x⊕ (x�1))) .

342 H. Lipmaa and S. Moriai

Algorithm 1 Log-time algorithm for aop(x)
INPUT: x ∈ Σn, n is a power of 2
OUTPUT: aop(x)

1. x[1] = x ∧ (x�1);
2. For i← 2 to log2 n− 1 do x[i]← x[i− 1] ∧ (x[i− 1]�2i−1);
3. y[1]← x ∧ ¬x[1];
4. For i← 2 to log2 n do y[i]← y[i− 1] ∨ ((y[i− 1]�2i−1) ∧ x[i− 1]);
5. Return y[log2 n];

For both the all-one and common alternation parity we will also need their “du-
als” (denoted as aopr and Cr), obtained by bit-reversing their arguments. That is,
aopr(x, y) = aop(x′, y′), where x′

i := xn−i and y′
i := yn−i. (See Fig. 1.) Note that for

every (x, y) and i, C(x, y)i = 1⇒ C(x, y)i+1 = C(x, y)i−1 = 0.
Clearly, Algorithm 1 finds the all-one parity of x in time Θ(logn). (It is sufficient to

note that x[i]j = 1 if and only if the number nj of ones in the sequence (xj = 1, xj+1 =
1, . . . , xj+nj−1 = 1, xj+nj−2 = 0) is at least 2i and y[i]j = 1 iff nj is an odd number
not bigger than 2j .) Therefore also C(x, y) can be computed in time Θ(logn).

4 Log-time Algorithm for Differential Probability of Addition

In this section we say that differential δ = (α, β �→ γ) is “good” if eq(α�1, β�1, γ�
1)∧(xor(α, β, γ)⊕(α�1)) = 0.Alternatively, δ is not “good” iff for some i ∈ [0, n−1],
αi−1 = βi−1 = γi−1 �= αi ⊕ βi ⊕ γi. (Remember that α−1 = β−1 = γ−1 = 0.) The
next algorithm has a simple linear-time version, suitable for “manual cryptanalysis”:
(1) Check, whether δ is “good”, using the second definition of “goodness”; (2) If δ is
“good”, count the number of positions i �= n−1, s.t. the triple (αi, βi, γi) contains both
zeros and ones.

Theorem 1. Let δ = (α, β �→ γ) be an arbitrary differential. Algorithm 2 returns
DP+(δ) in time Θ(logn). More precisely, it works in time Θ(1) + t, where t is the time
it takes to compute wh.

Algorithm 2 Log-time algorithm for DP+

INPUT: δ = (α, β 	→ γ)
OUTPUT: DP+(δ)

1. If eq(α�1, β�1, γ�1) ∧ (xor(α, β, γ)⊕ (β�1)) �= 0 then return 0;
2. Return 2−wh(¬eq(α,β,γ)∧mask(n−1));

Rest of this subsection consists of a step-by-step proof of this result, where we use the
Lemma 1, i.e., that DP+(δ) = Px,y[carry(x, y)⊕ carry(x⊕ α, y ⊕ β) = xor(α, β, γ).

Efficient Algorithms for Computing Differential Properties of Addition 343

We first state and prove two auxiliary lemmas. After that we show how Theorem 1
follows from them, and present two corollaries.

Lemma 2. Let L(x) be a mapping, such that L(0) = 0, L(1) = L(2) = 1
2 and

L(3) = 1. Let α, β ∈ Σn. Then Px,y[carry(x, y)i+1 ⊕ carry(x ⊕ α, y ⊕ β)i+1 =
1|αi + βi + ∆ci = j] = L(j).

Proof. We denote c = carry(x, y) and c∗ = carry(x ⊕ α, y ⊕ β), where x and y are
understood from the context. Let also ∆c = c⊕ c∗. By the definition of carry, ∆ci+1 =
(xi∧yi)⊕(xi∧ci)⊕(yi∧ci)⊕((x⊕α)i∧(y⊕β)i)⊕((x⊕α)i∧c∗

i)⊕((y⊕β)i∧c∗
i).

This formula for ∆ci+1 is symmetric in the three pairs (xi, αi), (yi, βi) and (ci, ∆ci).
Hence, the function f(αi, βi, ∆ci):=Pxi,yi,ci [∆ci+1 = 1] is symmetric, and therefore
f is a function of αi +βi +∆ci, f(j) = Pxi,yi,ci

[∆ci+1 = 1|αi +βi +∆ci = j]. One
can now prove that Pxi,yi [∆ci+1 = 1|αi + βi + ∆ci = j] = L(j) for any 0 ≤ j ≤ 3,
and for any value of ci ∈ {0, 1}. For example, Pxi,yi

[∆ci+1 = 1|αi + βi + ∆ci =
1] = Pxi,yi

[∆ci+1 = 1|(αi, βi, ∆ci) = (0, 0, 1)] = Pxi,yi [(xi ∧ ci) ⊕ (yi ∧ ci) ⊕
(xi ∧ ¬ci) ⊕ (xi ∧ ¬ci) = 1] = Pxi,yi [xi = yi] = 1

2 . The claim follows since
Px,y[∆ci+1] = Pxi,yi [∆ci+1]. ��

Lemma 3. 1) Every possible differential is “good”.
2) Let δ = (α, β �→ γ) be “good”. If i ∈ [0, n− 1], then Px,y[carry(x, y)i ⊕ carry(x⊕
α, y ⊕ β)i = 1|αi−1 + βi−1 + γi−1 = j] = L(j). In particular, Px,y[carry(x, y)0 ⊕
carry(x⊕ α, y ⊕ β)0 = 0] = 1.

Proof. 1) Let δ be possible but not “good”. By Lemma 1, there exists an i and a pair
(x, y), s.t. carry(x, y)i+1⊕ carry(x⊕α, y⊕ β)i+1 = xor(α, β, γ)i+1 �= αi = βi = γi.
Note that then xor(α, β, γ)i = γi. But by Lemma 2, Pxi,yi

[carry(x, y)i+1 ⊕ carry(x⊕
α, y ⊕ β)i+1 �= γi|αi = βi = γi] = 0, which is a contradiction.

2) Let δ be “good”. We prove the theorem by induction on i, by simultaneously
proving the induction invariant Px,y[carry(x, y)⊕ carry(x⊕ α, y ⊕ β) = xor(α, β, γ)
(mod 2i)] > 0. Base (i = 0). Straightforward from Property 1 and the definition
of a “good” differential. Step (i + 1 > 0). We assume that the invariant is true for
i. In particular, there exists a pair (x, y), s.t. ∆ci−1 = xor(α, β, γ)i−1, where ∆c =
carry(x, y)⊕ carry(x⊕ α, y ⊕ β). Then, by Lemma 2, L(j) = Px,y[∆ci = 1|αi−1 +
βi−1+∆ci−1 = j] = Px,y[∆ci = 1|αi−1+βi−1+xor(α, β, γ)i−1 = j] = Px,y[∆ci =
1|αi−1 + βi−1 + γi−1 = j], where the last equation follows from the easily verifiable
equality L(a1 + a2 + a3) = L(a1 + a2 + xor(a1, a2, a3)), for every a1, a2, a3 ∈ Σ .
This proves the theorem claim for i. The invariant for i, ∆ci = xor(α, β, γ)i, follows
from that and the “goodness” of δ. ��

Proof (Theorem 1). First, δ is “good” iff it is possible. (The “if” part follows from the
first claim of Lemma 3. The “only if” part follows from the second claim of Lemma 3
and the definition of a “good” differential.) Let δ be possible. Then, by Lemma 1,
DP+(δ) =

∏n−2
i=0 Px,y[carry(x, y)i ⊕ carry(x ⊕ α, y ⊕ β)i = xor(α, β, γ)i]. By

Lemma 2, Px,y[carry(x, y)i ⊕ carry(x ⊕ α, y ⊕ β)i = xor(α, β, γ)i] is either 1 or
1
2 , depending on whether αi−1 = βi−1 = γi−1 or not. (This probability cannot be 0,

344 H. Lipmaa and S. Moriai

since δ is possible and hence “good”.) Therefore, DP+(δ) = 2− ∑n−2
i=0 ¬eq(α,β,γ)i =

2−wh(¬eq(α,β,γ)∧mask(n−1)), as required. Finally, the only non-constant time computa-
tion is that of Hamming weight. ��
Note that technically, for Algorithm 2 to be log-time it would have to return (say) −1
if the differential is impossible, or log2 DP+(δ), if it is not. (The other valid possibility
would be to include data-dependent shifts in the set of unit-cost operations.)

The next two corollaries follow straightforwardly from Algorithm 2

Corollary 1. DP+ is symmetric in its arguments. That is, for an arbitrary triple
(α, β, γ), DP+(α, β �→ γ) = DP+(β, α �→ γ) = DP+(α, γ �→ β). Therefore, in par-
ticular, maxα DP+(α, β �→ γ) = maxβ DP+(α, β �→ γ) = maxγ DP+(α, β �→ γ).

Corollary 2. 1) [Conjecture 1, [AKM98].] Let α + β = α′ + β′ and α ⊕ β = α′ ⊕
β′. Then for every γ, DP+(α, β �→ γ) = DP+(α′, β′ �→ γ). 2) For every α, β, γ,
DP+(α, β �→ γ) = DP+(α ∧ β, α ∨ β �→ γ).

Proof. We say that (α, β) and (α′, β′) are equivalent, if {αi, βi} = {α′
i, β

′
i} for i <

n − 1, and αn−1 ⊕ βn−1 = α′
n−1 ⊕ βn−1. If (α, β) and (α′, β′) are equivalent then

DP+(α, β �→ γ) = DP+(α′, β′ �→ γ) by the structure of Algorithm 2.
1) The corresponding carries c = carry(α, β) and c′ = carry(α′, β′) are equal, since

c = (α⊕ β)⊕ (α+ β) = (α′ ⊕ β′)⊕ (α′ + β′) = c′. Therefore, α+ β = α′ + β′ and
α⊕ β = α′ ⊕ β′ iff (α, β) and (α′, β′) are equivalnet.

2) The second claim is straightforward, since (α, β) and (α∧β, α∨β) are equivalent
for any α and β. ��
Note that a pair (x, y) is equivalent to 21+wh((x⊕y)∧mask(n−1)) different pairs (x∗, y∗).
In [DGV93, Sect. 2.3] it was briefly mentioned that the number of such pairs is not more
than 2wh(x⊕y); this result was used to cryptanalyse IDEA. The second claim carries
unexpected connotations with the well known fact that α + α′ = (α ∧ α′) + (α ∨ α′).

5 Statistical Properties of Differential Probability

Note that Algorithm 2 has two principal steps. The first step is a constant-time check
of whether the differential δ = (α, β �→ γ) is impossible (i.e., whether DP+(δ) = 0).
The second step, executed only if δ is possible, computes in log-time the Hamming
weight of an n-bit string. The structure of this algorithm raises an immediate question of
what is the density Pδ[DP+(δ) �= 0] of the possible differentials, since its average-case
complexity (where the average is taken over uniformly and random chosen differentials
δ) is Θ(Pδ[DP+(δ) = 0] + Pδ[DP+(δ) �= 0] · log n). This is one (but certainly not the
only or the most important) motivation for the current section.

Let X : δ �→ DP+(δ) be a uniformly random variable. We next calculate the
exact probabilities P[X = i] for any i. From the results we can directly derive the
distribution of X . Knowing the distribution, one can, by using standard probabilistic
tools, calculate the values of many other interesting probabilistic properties like the
probabilities P[X > i] for any i.

Efficient Algorithms for Computing Differential Properties of Addition 345

Theorem 2. 1) [Conjecture 2, [AKM98].] P[X �= 0] = 1
2 ·

(7
8

)n−1
.

2) Let 0 ≤ k < n. Then P[X = 2−k] = 22+k−3n · 3k · (n−1
k

)
= 1

2 ·
(7

8

)n−1 ·
b
(
k;n− 1, 6

7

)
.

Proof. Let δ = (α, β �→ γ) be an arbitrary differential and let e = eq(α, β, γ), e′ =
eq(α� 1, β� 1, γ� 1) and x = xor(α, β, γ) ⊕ (α� 1)) be convenient shorthands.
Since α, β and γ are mutually independent, e and x (and also e′ and x) are pairwise
independent.

1) From Theorem 1, P[X �= 0] = Pδ[e′ ∧ x = 0] =
∏n−1

i=0 (1 − Pδ[e′
i = 1, xi =

1]) =
∏n−1

i=0 (1 − Pδ[e′
i = 1] · Pδ[xi = 1]) =

(
1− 1 · 1

2

) · ∏n−1
i=1

(
1− 1

4 · 1
2

)
=

1
2 ·

(7
8

)n−1
.

2) Let m = mask(n − 1). First, clearly, for any 0 ≤ k < n, Pδ[wh(e) = k] =
Pα,β,γ∈Σn [wh(e) = k] =

(1
4

)k · (3
4

)n−k · (n
k

)
= b

(
k;n, 1

4

)
and therefore Pδ[wh(¬e∧

m) = k] = b
(
n− 1− k;n− 1, 1

4

)
=

(1
4

)n−1−k · (3
4

)k · (n−1
k

)
= 22−2n · 3k · (n−1

k

)
.

Let A denote the event wh(e∧m) = n−1−k and let B denote the event e′∧x = 0.
Let Bi be the event e′

i∧xi = 0. According to Algorithm 2, P[X = 2−k] = Pδ[A,B] =
Pδ[A] ·Pδ[B|A] = Pδ[A] ·∏n−1

i=0 Pδ[Bi|A] = 1
2 ·Pδ[A] ·∏n−1

i=1 Pδ[Bi|A], where we
used the fact that e′

0 = 1.
Now, if i > 0 then Pδ[Bi|e′

i = 1] = Pδ[xi = 0] = 1
2 , while Pδ[Bi = 0|e′

i =

0] = 1. Moreover, e′
i = ei−1. Therefore,

∏n−1
i=0 Pδ[Bi|A] =

(1
2

)n−1−k
, and hence

P[X = 2−k] = 1
2 ·Pδ[A]·∏n−1

i=0 Pδ[Bi|A] = 1
2 ·b

(
n− 1− k;n− 1, 1

4

)·(1
2

)n−1−k =
1
2 ·22−2n ·3k ·(n−1

k

) ·21+k−n = 22+k−3n ·3k ·(n−1
k

)
= 1

2 ·
(7

8

)n−1 ·b (
k;n− 1, 6

7

)
. ��

Corollary 3. Algorithm 2 has average-case complexity Θ(1).

As another corollary, X = X0 +X1, where X1, X2 : δ �→ DP+(δ) are two random
variables. X0 has domain D(X0) = {δ ∈ Σ3n : DP+(δ) = 0}, while X1 has the
complementary domain D(X1) = {δ ∈ Σ3n : DP+(δ) �= 0}. Moreover, X0 has
constant distribution (since P[X0 = 0] = 1), while the random variable − log2 X1
has binomial distribution with p = 6

7 . Knowledge of the distribution helps to find
further properties of DP+ (e.g., the probabilities that DP+(δ) > 2−k) by using standard
methods from probability theory.

One can double-check the correctness of Theorem 2 by verifying that 1
2 · (7

8)n−1 ·∑n−1
k=0 b

(
k;n− 1, 6

7

)
=

∑n−1
k=0 P[X = 2−k] = P[X �= 0] = 1

2 ·
(7

8

)n−1
. Moreover,

clearly P[X = 2−k] = |D(X0)| · P[X0 = 2−k] + |D(X1)| · P[X1 = 2−k] = 1
2 ·(7

8

)n−1 · b (
k;n− 1, 6

7

)
, which agrees with Theorem 2.

We next compute the variance of X . Clearly, E[X] =
∑n−1

k=0 2−kP[X = 2−k] =
2−n, and therefore E[X]2 = 2−2n. Next, by using Theorem 2 and the basic properties
of the binomial distribution, E[X2] = 0 ·P[X2 = 0] +

∑n−1
k=0 2−2k ·P[X2 = 2−2k] =

1
2 ·

(7
8

)n−1 ·∑n−1
k=0 2−2k · b (

k;n− 1, 6
7

)
= 1

2 ·
(5

16

)n−1 ·∑n−1
i=0 b

(
k;n− 1, 3

5

)
=

1
2 ·

(5
16

)n−1
. Therefore, Var[X] = 1

2 ·
(5

16

)n−1 − 2−2n = 1
2 ·

((5
16

)n−1 − (4
16

)n−1
)

.

Note that the density of possible differentials P[X �= 0] is exponentially small in n.
This can be contrasted with a result of O’Connor [O’C95] that a randomly selected n-bit

346 H. Lipmaa and S. Moriai

Algorithm 3 Algorithm that finds all γ-s, s.t. DP+(α, β �→ γ) = DP+
max(α, β)

INPUT: (α, β)
OUTPUT: All (α, β)-optimal output differences γ

1. γ0 ← α0 ⊕ β0;
2. p← C(α, β);
3. For i← 1 to n− 1 do

If αi−1 = βi−1 = γi−1 then γi ← αi ⊕ βi ⊕ αi−1

else if i = n− 1 or αi �= βi or pi = 1 then γi ← {0, 1}
else γi ← αi;

4. Return γ.

permutation has a fraction of 1−e−1/2 ≈ 0.4 impossible differentials, independently of
the choice of n. Moreover, a randomly selected n-bit composite permutation [O’C93],
controlled by an n-bit string, has a negligible fraction ≈ 23n/e2

n−1 of impossible
differentials.

6 Algorithms for Finding Good Differentials of Addition

The last section described methods for computing the probability that a randomly picked
differential δ has high differential probability. While this alone might give rise to success-
ful differential attacks, it would be nice to have an efficient deterministic algorithm for
finding differentials with high differential probability. This section gives some relevant
algorithms for this.

6.1 Linear-Time Algorithm for DP+
max

In this subsection, we will describe an algorithm that, given an input difference (α, β),
finds all output differences γ, for which DP+(α, β �→ γ) is equal to the maximum differ-
ential probability of addition, DP+

max(α, β):= maxγ DP+(α, β �→ γ). (By Corollary 1,
we would get exactly the same result when maximizing the differential probability under
α or β.) We say that such γ is (α, β)-optimal. Note that when an (α, β)-optimal γ is
known, the maximum differential probability can be found by applying Algorithm 2 to
δ = (α, β �→ γ). Moreover, similar algorithms can be used to find “near-optimal” γ-s,
where log2 DP+(α, β �→ γ) is only slightly smaller than log2 DP+

max(α, β).

Theorem 3. Algorithm 3 returns all (α, β)-optimal output differences γ.

Proof (Sketch). First, we say that position i is bad if eq(α, β, γ)i = 0.According to The-
orem 1, γ is (α, β)-optimal if it is chosen so that (1) for every i ≥ 0, if eq(α, β, γ)i−1 = 1
then xor(αi, βi, γi) = αi−1, and (2) the number of bad positions i is the least among all
such output differences γ′, for which (α, β �→ γ′) is possible. For achieving (1) we must
first fix γ0 ← α0 ⊕ β0, and after that recursively guarantee that γi obtains the predicted
value whenever αi−1 = βi−1 = γi−1.

Efficient Algorithms for Computing Differential Properties of Addition 347

Algorithm 4 A log-time algorithm that finds an (α, β)-optimal γ
INPUT: (α, β)
OUTPUT: An (α, β)-optimal γ

1. r ← α ∧ 1;
2. e← ¬(α⊕ β) ∧ ¬r;
3. a← e ∧ (e�1) ∧ (α⊕ (α�1));
4. p← aopr(a);
5. a← (a ∨ (a�1)) ∧ ¬r;
6. b← (a ∨ e)�1;
7. γ ← ((α⊕ p) ∧ a) ∨ ((α⊕ β ⊕ (α�1)) ∧ ¬a ∧ b) ∨ (α ∧ ¬a ∧ ¬b);
8. γ ← (γ ∧ ¬1) ∨ ((α⊕ β) ∧ 1);
9. Return γ.

This, and minimizing the number of bad i-s can be done recursively for every 0 ≤
i ≤ n − 1, starting from i = 0. If αi �= βi then i is bad independently of the value of
γi ∈ {0, 1}. Moreover, either choice of γ places no restriction on choosing γi+1. This
means that we can assign either γi ← 0 or γi ← 1.

The situation is more complicated ifαi = βi. Intuitively, if �i = 2k > 0 is even, then
the choice γi ← αi (as compared to the choice γi ← ¬αi) will result in k bad positions
(i, i + 2, . . . , i + 2k − 2) instead of k bad positions (i + 1, i + 3, . . . , i + 2k − 1).
Thus these two choices are equal. On the other hand, if �i = 2k + 1 > 0, then the
choice γi ← αi would result in k bad positions compared to k + 1 when γi ← αi, and
hence is to be preferred over the second one. We leave the full details of the proof to the
reader. ��

A linear-time algorithm that finds one (α, β)-optimal γ can be derived from Algorithm 3
straightforwardly, by assigning γi ← αi whenever eq(α, β, γ)i−1 = 0.

As an example, let us look at the case n = 16, α = 0x5254 and β = 0x1A45. Then
C(α, β) = 0x1244, and by Algorithm 3 the set of (α, β)-optimal values is equal to
215Σ+212P+211Σ+24Σ+1, whereP = {0, 3, 7}, andΣ = {0, 1}, as always. There-
fore, for example, DP+

max(0x5254, 0x1A45) = DP+(0x5254, 0x1A45 �→ 0x7011) =
2−8.

6.2 Log-time Algorithm for DP+
max

For a log-time algorithm we need a somewhat different approach, since in Algorithm 3
the value of γi depends on that of γi−1. However, luckily for us, γi only depends on
γi−1 if eq(α, β, γ)i−1 = 1, and as seen from the proof of Theorem 3, in many cases we
can choose the output difference γi−1 so that eq(α, β, γ)i−1 = 0!

Moreover, the positions where eq(α, β, γ)i−1 = 1 must hold are easily detected.
Namely (see Algorithm 3), if (1) i = 0 and αi = βi = 0, or (2) i > 0 and αi = βi but
pi = 0.Accordingly, we can replace the condition eq(α, β, γ)i−1 = 1 with the condition
¬(αi ⊕ βi) ∧ pi, and take additional care if i is small. By noting how the values pi are
computed, one can prove that

348 H. Lipmaa and S. Moriai

Algorithm 5 A log-time algorithm for DP+
2max(α)

INPUT: α
OUTPUT: DP+

2max(α)

1. Return 2−wh(C
r(α,α)∧mask(n−1)).

Theorem 4. Algorithm 4 finds an (α, β)-optimal γ.

Proof (Sketch, many details omitted). First, the value of p computed in the step 4 is
“approximately” equal toCr(α, β), with some additional care taken about the lowest bits.
Let �r be the bit-reverse of � (i.e., �ri is equal to the length of longest common alternating
chain αi = βi �= αi−1 = βi−1 �=). Step 7 computes γi (again, “approximately”) as
(1) γi ← αi⊕pi, if αi = βi, (2) γi ← αi⊕βi⊕αi−1 if αi �= βi but eq(α, β, γ)i−1 = 1
and (3) γi ← αi if αi �= βi and eq(α, β, γ)i−1 = 0. Since the two last cases are sound,
according to Algorithm 3, we are now left to prove that the first choice makes γ optimal.

But this choice means that in every maximum-length common alternating bit chain
αi = βi �= αi−1 = βi−1 �= . . . �= αi−�r

i +1 = βi−�r
i +1, Algorithm 4 chooses all bits

γj , j ∈ [i − �ri + 1, i], to be equal to αi−�r
i +1 = βi−�r

i +1. By approximately the same
arguments as in the proof of Theorem 3, this choice gives rise to ��i/2� bad bit positions
in the fragment [i − �ri + 1, i]; every other choice of bits γj would result in at least as
many bad positions. Moreover, since ¬(αi+1 = βi+1 �= αi = βi), it has to be the case
that either αi+1 �= βi+1 or αi+1 = βi+1 = αi = βi. In the first case, both choices of γi

make i+ 1 bad. In the second case we must later take γi+1 ← αi+1, which makes i+ 1
good, and enables us to start the next fragment from the position i+ 1. (Intuitively, this
last fact is also the reason why aopr is here preferred over aop.) ��

Note that Biham and Shamir used the fact DP+(α, β �→ α⊕ β) =
2−wh((α∨β)∧mask(n−1)) in their differential cryptanalysis of FEAL in [BS91b]. Often this
value is significantly smaller than the maximum differential probability DP+

max(α, β).
For example, ifα = β = 2n−1, then DP+

max(α, β) = 1
2 , while DP+(α, β �→ α⊕ β) =

DP+(α, β �→ 0) = 2n−1. However, since FEAL only uses 8-bit addition, it is possible
to find (α, β)-optimal output differences γ by exhaustive search. This has been done,
for example, in [AKM98].

6.3 Log-time Algorithm for Double-Maximum Differential Probability

We next show that the double-maximum differential probability

DP+
2max(α):= max

β,γ
DP+(α, β �→ γ) = max

β
DP+

max(α, β)

of addition can be computed in time Θ(logn). (As seen from Algorithm 3, DP+
max(α, β)

is a symmetric function and hence DP+
2max(α) is equal to DP+(α, β �→ γ) maxi-

mized under any two of its three arguments.) In particular, the next theorem shows
that DP+

2max(α) is equal to the (more relevant for the DC) value maxβ �=0 DP+
max(α, β)

whenever α �= 0. Note that the naive algorithm for the same problem works in time
Ω(24n), which makes it practically infeasible even for n = 16.

Efficient Algorithms for Computing Differential Properties of Addition 349

Theorem 5. For every α ∈ Σn, Algorithm 5 computes DP+
2max(α) in time Θ(logn).

Proof (Sketch). By the same arguments as in the proof of previous theorem, given inputs
(α, α), the value γ:=α ⊕ (Cr(α, α) ∧mask(n− 1)) is (α, α)-optimal. We now prove
by contradiction that DP+

2max(α) = DP+
max(α, α). Let β �= α and γ′ be such that

DP+(α, β �→ γ′) > DP+
max(α, α). By Algorithms 2 and 4, there is an i < n − 1

such that eq(α, β, γ′)i = 1 and Cr(α, α)i = 1. But then, on the other hand, since
the differential (α, β �→ γ′) is possible and Cr(α, α)i = 1, it is also the case that
eq(α, β, γ′)i−1 = 0. Since Cr(α, α)i = 1 ⇒ Cr(α, α)i−1 = 0, we have also that
Cr(α, α)i−1 = 0. Therefore DP+(α, β �→ γ′) ≤ DP+

max(α, α). ��
Straightforwardly, Theorem 5 helps to find many interesting properties of DP+

2max. For
example, DP+

2max(α) = 1 iff α ∧ (2n−1 − 1) = 0, and minα DP+
2max(α) = 2−n/2.

Another consequence is that DP+
2max(α) = 1

2 iff (1) α ∧ (2n−1 − 1) = −2s + 1 for
some 0 ≤ s < n, or (2) α ∧ (2n−1 − 1) = 2s for some 0 ≤ s < n − 1. For better
understanding, all values of DP+

2max(α), n = 8, are depicted in Fig. 2.

α

log
2
D

P
+2m

ax (α
)

2402242081921761601441281129680644832160

0
-1
-2
-3
-4

Fig. 2. Tabulation of values log2 DP+
2max(α), 0 ≤ α ≤ 255, for n = 8. For example,

DP+
2max(64) = 1

2 and DP+
2max(53) = 2−4

Once again, our results may be compared with the results in [O’C93,O’C95] that
show that for an n-bit permutation (resp. composite permutation, controlled by an n-
bit string) the expected probability of the maximum nonzero differential is ≤ n/2n−1

(resp. ≈ 2−n).

Further Work and Acknowledgments. While we leave practical applications of our
results as an open question, we note that our results have already been used in [MY00]
for truncated differential cryptanalysis of Twofish.

The current work bases somewhat on [Mor00], that had a (correct) linear-time al-
gorithm for DP+, but with an incorrect proof. We would like to thank Eli Biham for
notifying us about the results presented in the full version of [BS91b].

References

[AKM98] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. The Best Differential Char-
acteristic Search of FEAL. IEICE Trans. Fundamentals, E81-A(1):98–104, January
1998.

350 H. Lipmaa and S. Moriai

[Ber92] Thomas A. Berson. Differential Cryptanalysis Mod 232 with Applications to MD5. In
Ernest F. Brickell, editor, Advances in Cryptology—CRYPTO ’92, volume 740 of Lec-
ture Notes in Computer Science, pages 71–80. Springer-Verlag, 1993, 16–20 August
1992.

[BS91a] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

[BS91b] Eli Biham and Adi Shamir. Differential Cryptanalysis of Feal and N-Hash. In Don-
ald W. Davies, editor, Advances on Cryptology — EUROCRYPT ’91, volume 547 of
Lecture Notes in Computer Science, pages 1–16, Brighton, UK, April 1991. Springer-
Verlag. Full version available from
http://www.cs.technion.ac.il/˜biham/, as of April 2001.

[Dae95] Joan Daemen. Cipher and Hash Function Design. Strategies based on linear and
differential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, 1995.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewalle. Cryptanalysis of 2.5 Rounds of
IDEA. Technical Report 1, ESAT-COSIC, 1993.

[Knu99] Lars Knudsen. Some Thoughts on the AES Process. Public Comment to the AES
First Round, 15 April 1999. Available from
http://www.ii.uib.no/˜larsr/serpent/, as of April 2001.

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Differential
Cryptanalysis. In Donald W. Davies, editor, Advances on Cryptology — EUROCRYPT
’91, volume 547 of Lecture Notes in Computer Science, pages 17–38, Brighton, UK,
April 1991. Springer-Verlag.

[Miy98] Hiroshi Miyano. Addend Dependency of Differential/Linear Probability of Addition.
IEICE Trans. Fundamentals, E81-A(1):106–109, January 1998.

[Mor00] Shiho Moriai. Cryptanalysis of Twofish (I). In The Symposium on Cryptography and
Information Security, Okinawa, Japan, 26–28 January 2000. In Japanese.

[MY00] Shiho Moriai and Yiqun Lisa Yin. Cryptanalysis of Twofish (II). Technical report,
IEICE, ISEC2000-38, July 2000.

[NK95] Kaisa Nyberg and Lars Knudsen. Provable Security Against a Differential Attack.
Journal of Cryptology, 8(1):27–37, 1995.

[O’C93] Luke J. O’Connor. On the Distribution of Characteristics in Composite Permutations.
In Douglas R. Stinson, editor, Advances on Cryptology — CRYPTO ’93, volume 773
of Lecture Notes in Computer Science, pages 403–412, Santa Barbara, USA, August
1993. Springer-Verlag.

[O’C95] Luke O’Connor. On the Distribution of Characteristics in Bijective Mappings. Journal
of Cryptology, 8(2):67–86, 1995.

	Introduction
	Preliminaries
	RAM Model and Some Useful Algorithms
	Log-time Algorithm for Differential Probability of Addition
	Statistical Properties of Differential Probability
	Algorithms for Finding Good Differentials of Addition
	Linear-Time Algorithm for ${rm DP}^{+}_{@mathsf {max}}$
	Log-time Algorithm for ${rm DP}^{+}_{@mathsf {max}}$
	Log-time Algorithm for Double-Maximum Differential Probability

