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Abstract. In this paper we develop a technique that allows to obtain
new effective constructions of highly resilient Boolean functions with
high nonlinearity. In particular, we prove that the upper bound
2n−1 − 2m+1 on nonlinearity of m-resilient n-variable Boolean functions
is achieved for 0.6n − 1 ≤ m ≤ n − 2.
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1 Introduction

One of the most general types of stream cipher systems is several Linear Feedback
Shift Registers (LFSRs) combined by nonlinear Boolean function. This function
must satisfy certain criteria to resist different attacks (in particular, correlation
attacks suggested by Siegenthaler [18] and different types of linear attacks). The
following factors are considered as important properties of Boolean functions for
using in stream cipher applications.

1. Balancedness. A Boolean function must output zeroes and ones with the
same probabilities.

2. Good correlation-immunity (of order m). The output of Boolean function
must be statistically independent of combination of anym its inputs. A balanced
correlation-immune of order m Boolean function is called m-resilient.

3. Good nonlinearity. The Boolean function must be at the sufficiently high
distance from any affine function.

Other important factors are large algebraic degree and simple implementation
in hardware.

The variety of criteria and complicated trade-offs between them caused the
next approach: to fix one or two parameters and try to optimize others. The
most general model is when researchers fix the parameters n (number of vari-
ables) and m (order of correlation-immunity) and try to optimize some other
cryptographically important parameters. Here we can call the works [16], [2],
[7], [4] [8], [9], [10], [12], [19], [20], [22].

The present paper continues the investigations in this direction and gives new
results. In Section 2 we give preliminary concepts and notions. In Section 3 we
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give a brief review of the investigations on the problem of maximal nonlinearity
for n-variable m-resilient Boolean function. In Section 4 we discuss a concept
of a linear and a pair of quasilinear variables which works in the following sec-
tions. In Section 5 we present our main construction method. This method is
a generalization of a method described in [19] and [20]. This method allows to
construct recursively the functions with good cryptographic properties using the
functions with good cryptographic properties and smaller number of variables.
The method is based on the existence of a proper matrix with prescribed prop-
erties. In Section 6 we give some examples of proper matrices and obtain new
results on the maximal nonlinearity nlmax(n, l) of m-resilient functions on V n.
Namely, we prove that nlmax(n,m) = 2n−1 − 2m+1 for 5n−14

8 ≤ m ≤ n− 2 and
for 0.6n−1 ≤ m ≤ n−2. In Section 7 we give some remarks on the combinatorial
problem connected with proper matrices and give a geometrical interpretations
of proper matrices.

2 Preliminary Concepts and Notions

We consider V n, the vector space of n tuples of elements from GF (2). A Boolean
function is a function from V n to GF (2). The weight wt(f) of a function f on V n

is the number of vectors x on V n such that f(x) = 1. A function f is said to be
balanced if wt(f) = wt(f ⊕ 1). Obviously, if a function f on V n is balanced then
wt(f) = 2n−1. A subfunction of the Boolean function f is a function f ′ obtained
by substitution some constants for some variables in f . If we substitute in the
function f the constants σi1 , . . . , σis for the variables xi1 , . . . , xis respectively
then the obtained subfunction is denoted by fσi1 ,...,σis

xi1 ,...,xis
. If a variable xi is not

substituted by constant then xi is called a free variable for f ′.
It is well known that a function f on V n can be uniquely represented by a

polynomial on GF (2) whose degree is at most n. Namely,

f(x1, . . . , xn) =
⊕

(a1,...,an)∈V n

g(a1, . . . , an)xa1
1 . . . x

an
n

where g is also a function on V n. This polynomial representation of f is called
the algebraic normal form (briefly, ANF) of the function and each xa1

1 . . . x
an
n

is called a term in ANF of f . The algebraic degree of f , denoted by deg(f), is
defined as the number of variables in the longest term of f . The algebraic degree
of variable xi in f , denoted by deg(f, xi), is the number of variables in the longest
term of f that contains xi. If deg(f, xi) = 1, we say that xi is a linear variable
in f . The term of length 1 is called a linear term. If deg(f) ≤ 1 then f is called
an affine function.

The Hamming distance d(x′, x′′) between two vectors x′ and x′′ is the number
of components where vectors x′ and x′′ differ. For two Boolean functions f1 and
f2 on V n, we define the distance between f1 and f2 by d(f1, f2) = #{x ∈
V n|f1(x) �= f2(x)}. The minimum distance between f and the set of all affine
functions is called the nonlinearity of f and denoted by nl(f).
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A Boolean function f on V n is said to be correlation-immune of order m,
with 1 ≤ m ≤ n, if the output of f and any m input variables are statistically in-
dependent. This concept was introduced by Siegenthaler [17]. In equivalent non-
probabilistic formulation the Boolean function f is called correlation-immune of
orderm if wt(f ′) = wt(f)/2m for any its subfunction f ′ of n−m variables. A bal-
anced mth order correlation immune function is called an m-resilient function.
In other words the Boolean function f is called m-resilient if wt(f ′) = 2n−m−1

for any its subfunction f ′ of n − m variables. From this point of view we can
consider formally any balanced Boolean function as 0-resilient (this convention
is accepted in [1], [9], [12]) and an arbitrary Boolean function as (−1)-resilient.
The concept of an m-resilient function was introduced in [3].

Siegenthaler’s Inequality [17] states that if the function f is a correla-
tion-immune function of order m then deg(f) ≤ n − m. Moreover, if f is an
m-resilient, m ≤ n− 2, then deg(f) ≤ n−m− 1.

The next lemma is well-known.

Lemma 1. Let f(x1, . . . , xn) be a Boolean function represented in the form

f(x1, . . . , xn) =
⊕

(σ1,...,σl)

(x1 ⊕ σ1) . . . (xl ⊕ σl)f(σ1 ⊕ 1, . . . , σl ⊕ 1, xl+1, . . . , xn).

Suppose that all 2l subfunctions f(σ1⊕1, . . . , σl⊕1, xl+1, . . . , xn) are m-resilient.
Then the function f is an m-resilient too.

The Lemma 1 was proved in a lot of papers including (for l = 1) the pioneer-
ing paper of Siegenthaler (Theorem 2 in [17]). General case follows immediately
from the case l = 1.

3 The Problem of Maximal Nonlinearity for Resilient
Functions

Let m and n be integers, −1 ≤ m ≤ n. Denote by nlmax(n,m) the maximal
possible nonlinearity of m-resilient Boolean function on V n. It is well-known
that the nonlinearity of a Boolean function does not exceed 2n−1 − 2

n
2 −1 [15].

Thus, nlmax(n,−1) ≤ 2n−1 − 2
n
2 −1. This value can be achieved only for even

n. The functions with such nonlinearity are called bent functions. Thus, for even
n we have nlmax(n,−1) = 2n−1 − 2

n
2 −1. It is known [13,14,7] that for odd n,

n ≤ 7, nlmax(n,−1) = 2n−1 − 2(n−1)/2, and for odd n, n ≥ 15, the inequality
nlmax(n,−1) > 2n−1 − 2(n−1)/2 holds. Bent functions are nonbalanced always,
so, for balanced (0-resilient) n-variable function f we have nl(f) < 2n−1 −
2

n
2 −1, and nlmax(n,m) < 2n−1 − 2

n
2 −1 for m ≥ 0. If f is n-variable m-resilient

function, m ≥ n − 2, then by Siegenthaler’s Inequality [17] deg(f) ≤ 1, so
nlmax(n,m) = 0. For some small values of parameters n and m exact values of
maximal nonlinearity are known. The latest collection of such values is given in
[10]. The upper bound nlmax(n,m) ≤ 2n−1 − 2m+1 for m ≤ n − 1 was proven
independently in [10], [19] and [23], all three these manuscripts were submitted
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to Crypto 2000 although only the first was accepted). In [19] and [20] an effective
construction of m-resilient function on V n with nonlinearity 2n−1 − 2m+1 was
given. This construction gives that nlmax(n,m) = 2n−1−2m+1 for 2n−7

3 ≤ m ≤
n − 2. The construction of [19] and [20] was slightly modified in [11]. The last
modification follows that nlmax(n,m) = 2n−1 − 2m+1 for 2n−8

3 ≤ m ≤ n− 2. In
[10] it was proved that the nonlinearity of m-resilient function on V n is divided
by 2m+1. Also in [10] it was proved that nlmax(n,m) ≤ 2n−1 − 2n/2−1 − 2m+1

for m < (n/2) − 2 (for the case of odd n a bit more strong bound was given).

4 On Linear and Quasilinear Variables

In this section we recall the concepts of linear and quasilinear variables. The last
concept was introduced in [19].

Recall that a variable xi is called a linear for a function f = f(x1, . . . , xi−1,
xi, xi+1, . . . , xn) if deg(f, xi) = 1. Also we say that a function f depends on a
variable xi linearly. If a variable xi is linear for a function f we can represent f
in the form

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xn) ⊕ xi.

Other equivalent definition of a linear variable is that a variable xi is linear for
a function f if f(x′) �= f(x′′) for any two vectors x′ and x′′ that differ only in
ith component. By analogy with the last definition we give a new definition for
a pair of quasilinear variables.

Definition 1. We say that a Boolean function f = f(x1, . . . , xn) depends on a
pair of its variables (xi, xj) quasilinearly if f(x′) �= f(x′′) for any two vectors x′

and x′′ of length n that differ only in ith and jth components. A pair (xi, xj) in
this case is called a pair of quasilinear variables in f .

The proof of the next lemma is given in [19] and [20].

Lemma 2. Let f(x1, . . . , xn) be a Boolean function. Then (xi, xj), i < j, is a
pair of quasilinear variables in f iff f can be represented in the form

f(x1, . . . , xn) = g(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn, xi ⊕ xj) ⊕ xi. (1)

The next lemmas are obvious.

Lemma 3. Let f(x1, . . . , xn) be a Boolean function. If f depends on some vari-
able xi linearly then f is balanced.

Lemma 4. f(x1, . . . , xn) be a Boolean function. If f depends on some variables
xi1 , xi2 , . . . , xis linearly then f is (s− 1)-resilient.

Note that Lemma 4 agrees with our assumption that a balanced function is
0-resilient, and an arbitrary Boolean function is (−1)-resilient. (In the last case
s = 0.)
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Lemma 5. Let f(x1, . . . , xn) be a Boolean function. If f depends on some pair
of variables (xi, xj) quasilinearly then f is balanced.

Lemma 6. Let f(x1, . . . , xn, xn+1) = f(x1, . . . , xn) ⊕ cxn+1 where c ∈ {0, 1}.
Then nl(f) = 2nl(g).

Lemma 7. Let f(x1, . . . , xn) be a Boolean function on V n and f depends on
some pair of variables (xi, xj) quasilinearly. Then nl(f) = 2nl(g) where g is a
function used in the representation of f in Lemma 2.

Lemma 8. Let f1 and f2 be two Boolean functions on V n. Moreover, there
exist variables xi and xj such that f1 depends on a pair of variables (xi, xj)
quasilinearly whereas f2 depends on the variables xi and xj linearly. Let l be an
arbitrary affine function on V n. Then at least one of two functions f1 ⊕ l and
f2 ⊕ l is balanced.

Proof. Let l =
n⊕

r=1
urxr ⊕u0, ur ∈ {0, 1}, r = 0, 1, . . . , n. If ui = 0 (correspon-

dently, uj = 0) then f2 ⊕ l depends on the variable xi (xj) linearly, therefore
the function f2 ⊕ l is balanced. The remained case is ui = uj = 1. But here
it is easy to see that the function f1 ⊕ l depends on a pair of variables (xi, xj)
quasilinearly, therefore f1 ⊕ l is balanced. 
�

5 A Method of Constructing

Suppose that f0, f1, . . . , f2k−1 are Boolean functions on V n. We denote fr also
as fσ1...σk

where σ1 . . . σk is a binary representation of the number r. Suppose

that c = (c1, . . . , ck) is an arbitrary binary vector. Put s =
k∑

i=1
ci. We denote

X = {xi | i = 1, . . . , n}, Y = {yi | i = 1, . . . , k}, Z = {zi | ci = 1, i = 1, . . . , k}
(The set Z contains the variables zi only for i such that ci = 1). We define

f(X,Y, Z) =


 ⊕

(σ1,...,σk)∈V k

(
k∏

i=1

(yi ⊕ cizi ⊕ σi)

)
fσ1...σk

(X)


⊕

k⊕
i=1

cizi. (2)

By construction the function f in (2) depends on n+ k + s variables. Below we
formulate some properties of construction (2).

Remark. Some details of construction (2) can be understood more easily if
we put c1 = . . . = cs = 1, cs+1 = . . . = ck = 0. But for an effective implementa-
tion it is important in some cases to vary the vector c.

Lemma 9. Suppose that all 2k Boolean functions f0, f1, . . . , f2k−1 in (2) are
m-resilient. Then the function f(X,Y, Z) is (m+ s)-resilient.

Proof. Substitute in (2) arbitrarym+s constants for arbitrarym+s variables.
We obtain some (n + k −m)-variable subfunction f ′. If ci = 1 for some i and
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if both variables yi and zi are free in f ′ then the pair of variables (yi, zi) is a
quasilinear pair in f ′ therefore by Lemma 5 the subfunction f ′ is balanced). Thus,
we can assume that for each i such that ci = 1 at least one of two variables yi and
zi is substituted by constant. Then at most m variables from X are substituted
by constants in (2). All functions f0, f1, . . . , f2k−1 are balanced, therefore the
function f(X,Y, Z) is balanced too. We have proved that an arbitrary (n+k−m)-
variable subfunction of f(X,Y, Z) is balanced. 
�

Lemma 10. Suppose that the nonlinearity of all 2k Boolean functions f0, f1,
. . . , f2k−1 in (2) is at least N0. Moreover, for any two functions fr1 and fr2 ,
0 ≤ r1 �= r2 ≤ 2k − 1, there exists a pair of variables (xi, xj) such that one of
these two functions, say fr1 depends linearly on the variables xi and xj whereas
another function fr2 depends quasilinearly on the pair (xi, xj). Then nl(f) ≥
2s(2n−1(2k − 1) +N0).

Proof. It is obvious that if we replace ci = 0 by ci = 1 then we multiplate
the nonlinearity by 2 (adding new variable). Thus we can assume that s = 0.
Consider an arbitrary affine function l. Denote lr = lσ1⊕1,

y1,
...,
...,

σk⊕1
yk

where σ1 . . . σk

is a binary representation of the number r. Note that for any r = 0, . . . , 2k − 1,

we have lr = l0 or lr = l0 ⊕ 1. Then d(f, l) =
2k−1∑
r=0

d(fr, lr). By Lemma 8 and the

hypothesis of this lemma we have that d(fr, lr) �= 2n−1 for at most one value of
r. Thus d(f, l) ≥ 2n−1(2k − 1) +N0. An affine function l was chosen arbitrary.
Therefore nl(f) ≥ 2n−1(2k − 1) +N0. 
�

The construction (2) is a generalization of the construction in [19] and [20]
where only the case k = 1 is considered.

The problem is to find the functions f0, f1, . . . , f2k−1 with desirable distribu-
tion of linear and quasilinear variables. Below we give some approach that allows
to construct such systems of functions.

Definition 2. Let B = (bij) be (2k × p) matrix of 2k rows and p columns with
entries from the set {1, 2, ∗}. Let k0 and t be positive integers. We assume that

(i) for every two rows i1 and i2 there exists a column j such that bi1j = 1,
bi2j = 2 or bi1j = 2, bi2j = 1.

(ii) for every row i the inequality
p∑

j=1
bij ≤ t holds (a sign ∗ does not give an

influence to these sums).
(iii) in every row the number of ones does not exceed k0.
If the matrix B satisfies all properties (i), (ii), (iii) we say that B is a proper

(k0, k, p, t)-matrix.

Definition 3. Let F be a set of Boolean functions such that for every s, 0 ≤
s ≤ k, the set F contains an (m+s)-resilient function on V n+s with nonlinearity
at least 2s(2n−1 − 2m+λ) (λ is not necessary integer). Moreover, we assume that
each fs contains s disjoint pairs of quasilinear variables. Then we say that F is
a Sn,m,k,λ-system of Boolean functions.
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Remark. To provide an existence of a Sn,m,k,λ-system of Boolean functions
it is sufficient to have only one (m+ k)-resilient function f on V n+k with non-
linearity at least 2k(2n−1 − 2m+λ) that contains k disjoint pairs of quasilinear
variables. All other necessary functions of Sn,m,k,λ-system can be obtained from
f by substitutions of constants for the variables from different disjoint pairs
of quasilinear variables. But note that the last way is not effective from the
implementation point of view.

Lemma 11. There exists an S2,−1,2,1-system of Boolean functions.

Proof. Put f ′
0 = x1x2, f ′

1 = (x1⊕x2)x3⊕x1, f ′
2 = (x1⊕x2)(x3⊕x4)⊕x1⊕x3.

It is easy to verify that f ′
s, s = 0, 1, 2, is a (−1 + s)-resilient function on V 2+s

with nonlinearity 2s(22−1 − 2−1+1), moreover, f ′
s contains s disjoint pairs of

quasilinear variables. 
�
Theorem 1. Suppose that there exists an Sn,m,k0,λ-system of Boolean functions
F and there exists a proper (k0, k, p, t)-matrix B, n ≥ 2p− t. Then there exists
an Sn+k+t,m+t,k,λ-system of Boolean functions.

Proof. Consider the ith row of the matrix B, i = 0, 1, . . . , 2k−1. Suppose that
this row contains s = s(i) ones. The matrix B is a proper, therefore s ≤ k0, s ≤ t.
By assumption there exists an (m+s)-resilient function f ′

i on V n+s that contains
s disjoint pairs of quasilinear variables with nonlinearity at least 2s(2n−1−2m+λ).
Add t − s new linear variables to the function f ′

i . As a result we obtain the
function f ′′

i on V n+t. It is easy to see that the function f ′′
i is an (m+ t)-resilient

function with nonlinearity at least 2t(2n−1 − 2m+λ), moreover f ′′
i contains s

disjoint pairs of quasilinear variables and besides t−s linear variables. Note that
by the property (ii) of a proper matrix the value t−s is not less than the number
of 2’s in ith row of B multiplied by 2. By this way we construct the functions f ′′

i

on V n+t for every i, i = 0, 1, . . . , 2k−1. By assumption n+t ≥ 2p. Next, for every
i, i = 0, 1, . . . , 2k −1, we permute the variables in f ′′

i (x1, . . . , xn+t) obtaining the
function fi such that the function fi depends on a pair of variables (x2j−1, x2j)
quasilinearly if bij = 1, and the function fi depends on the variables x2j−1 and
x2j linearly if bij = 2. By the arguments given above we have sufficient numbers
of quasilinear and linear variables for this procedure. Now we are ready to apply
the construction (2). By means of this construction varying the number of ones
in the vector (c1, . . . , ck) we obtain the functions f(X,Y, Zs), s = 0, 1, . . . , k.
The function f(X,Y, Zs) by Lemmas 9 and 10 is an (m+ t+s)-resilient function
on V n+k+t+s with the nonlinearity at least 2s(2n+k+t−1 − 2m+t+λ). Moreover,
the function f(X,Y, Zs) contains s disjoint pairs of quasilinear variables. Thus,
we have constructed an Sn+k+t,m+t,k,λ-system of Boolean functions. 
�

An application of the construction given in Theorem 1 we denote by

Sn,m,k0,λTk0,k,p,t = Sn+k+t,m+t,k,λ.

If we add new linear variable to an m-resilient function f on V n then we
obtain (m+1)-resilient function f on V n+1 with nonlinearity 2nl(f). We denote
this procedure by

Sn,m,0,λT0,0,0,1 = Sn+1,m+1,0,λ.
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6 Examples of Proper Matrices Effective for Our
Construction and New Resilient Boolean Functions
with Maximal Nonlinearity

At first, we give some examples of proper matrices effective for the construction
of Boolean functions with good combination of parameters. We denote a proper
(k0, k, p, t)-matrix by Bk0,k,p,t.

B1,1,1,2 =
(

2
1

)
, B2,2,2,4 =




2 2
2 1
1 2
1 1


 , B3,2,3,3 =




2 1 ∗
∗ 2 1
1 ∗ 2
1 1 1


 ,

B2,3,5,6 =




2 2 1 1 ∗
2 1 1 2 ∗
2 1 ∗ 1 2
2 1 2 ∗ 1
1 1 ∗ 2 2
1 2 1 ∗ 2
1 ∗ 2 1 2
1 ∗ 2 2 1



, B3,3,4,5 =




∗ 1 2 2
2 ∗ 1 2
2 2 ∗ 1
1 2 2 ∗
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2



,

B2,4,7,8 =




1 1 ∗ ∗ 2 2 2
∗ 2 1 1 ∗ 2 2
∗ ∗ 2 2 1 1 2
1 ∗ ∗ 2 2 2 1
2 1 1 ∗ ∗ 2 2
∗ ∗ 2 1 1 2 2
∗ ∗ 2 2 2 1 1
1 2 2 1 2 ∗ ∗
∗ 1 2 2 1 2 ∗
∗ ∗ 1 2 2 1 2
2 ∗ ∗ 1 2 2 1
1 2 ∗ 2 1 2 ∗
∗ 1 2 ∗ 2 1 2
2 ∗ 1 2 ∗ 2 1
2 2 ∗ 1 ∗ 1 2
2 2 2 ∗ 1 ∗ 1




, B4,4,6,6 =




2 2 2 ∗ ∗ ∗
1 2 ∗ 1 2 ∗
1 2 ∗ ∗ 1 2
1 2 ∗ 2 ∗ 1
∗ 1 2 1 2 ∗
∗ 1 2 ∗ 1 2
∗ 1 2 2 ∗ 1
2 ∗ 1 1 2 ∗
2 ∗ 1 ∗ 1 2
2 ∗ 1 2 ∗ 1
2 ∗ 1 1 1 1
1 2 ∗ 1 1 1
∗ 1 2 1 1 1
1 1 1 2 ∗ 1
1 1 1 1 2 ∗
1 1 1 ∗ 1 2




.

It is easy to verify that all matrices given above are proper matrices with
correspondent parameters.

The simplest example of a proper matrix is the matrix B1,1,1,2. If 2n−7
3 ≤ m ≤

n− 3 then the numbers n and m can be represented in the form n = 3r+ s+ 2,
m = 2r + s − 1, where r and s are nonnegative integers (an existence of this
representation as well as an existence of the representations in Theorems 2 and
3 can be proved by the arguments from the elementary arithmetic). By Lemma
11 there exists a system S2,−1,2,1. We apply

S2,−1,2,1(T1,1,1,2)r(T0,0,0,1)s = Sn,m,0,1.
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Therefore nlmax(n,m) ≥ 2n−1−2m+1 form ≥ 2n−7
3 . In Section 3 it was pointed

out that nlmax(n,m) ≤ 2n−1 − 2m+1 for m ≤ n− 2. Therefore nlmax(n,m) =
2n−1 − 2m+1 for 2n−7

3 ≤ m ≤ n − 2. The above construction was given in [19]
and [20].

Theorem 2. nlmax(n,m) = 2n−1 − 2m+1 for 5n−14
8 ≤ m ≤ n− 2.

Proof. Let n, m be integers. Note that � 5n−14
8 � ≥ � 2n−7

3 � for n < 17. If
n ≥ 17, m > n − 8, then m ≥ 2n−7

3 . If n ≥ 17, 5n−13
8 ≤ m ≤ n − 8, then

the numbers n and m can be represented in the form n = 8r1 + 3r2 + s + 17,
m = 5r1 + 2r2 + s+ 9, where r1, r2 and s are nonnegative integers. We apply

S2,−1,2,1T2,2,2,4T2,3,5,6(T3,3,4,5)r1(T1,1,1,2)r2(T0,0,0,1)s = Sn,m,0,1.

If n ≥ 17, 5n−14
8 = m, then the numbers n and m can be represented in the form

n = 8r + 22, m = 5r + 12, where r is nonnegative integer. In this case we apply

S2,−1,2,1T2,2,2,4T2,3,5,6(T3,3,4,5)rT3,2,3,3 = Sn,m,2,1.


�
Theorem 3. nlmax(n,m) = 2n−1 − 2m+1 for 0.6n− 1 ≤ m ≤ n− 2.

Proof. Let n, m be integers. Note that 0.6n−1 ≥ 2n−7
3 for n ≤ 20. If n ≥ 20,

m > n− 9, then m ≥ 2n−7
3 . If n ≥ 20, 0.6n− 1 ≤ m ≤ n− 9, excepting the case

m = 0.6n− 1, n ≡ 5 (mod 10), then the numbers n and m can be represented
in the form n = 10r1 + 8r2 + 3r3 + s+ 20, m = 6r1 + 5r2 + 2r3 + s+ 11, where
r1, r2,r3 and s are nonnegative integers. We apply

S2,−1,2,1T2,2,2,4T2,4,7,8(T4,4,6,6)r1(T3,3,4,5)r2(T1,1,1,2)r3(T0,0,0,1)s = Sn,m,0,1.

In the case n = 10r+25, m = 6r+14, where r is a nonnegative integer we apply

S2,−1,2,1T2,2,2,4T2,4,7,8(T4,4,6,6)rT3,2,3,3 = Sn,m,2,1.


�
Note that the best previous result [11] was that nlmax(n,m) = 2n−1 −2m+1

for 2n−8
3 ≤ m ≤ n − 2. Since 5n−14

8 < 2n−8
3 for n > 22 it is easy to check that

our constructions provide the best known result beginning with n = 25.

7 Some Remarks on Combinatorial Problem and
Geometrical Interpretations

If there exists a proper (k, k, p, t)-matrix then using the technique described in
the previous section we can prove that nlmax(n,m) = 2n−1 − 2m+1 for m >

t
t+kn − c′ where c′ is a some constant. Therefore we are interesting to find a
proper (k, k, p, t)-matrix where the ratio t

k is as small as possible.
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For given positive integer k we denote by t(k) the minimal positive integer
t such that for some p there exists a proper (k, k, p, t)-matrix. It is clear that
we can consider only matrices without all-∗ columns. Then obviously p ≤ t · 2k.
There exists a proper (k, k, k, 2k)-matrix (all rows are different and without ∗).
Thus, to find t(k) it is sufficiently to consider only a finite set of matrices.

Proposition 1. Let k1 and k2 be positive integers. Then t(k1 + k2) ≤ t(k1) +
t(k2).

Proof. By definition for some p1 and p2 there exist a proper (k1, k1, p1, t(k1))-
matrix B′ and a proper (k2, k2, p2, t(k2))-matrix B′′. Compose a (2k1+k2 × (p1 +
p2)) matrix B where the rows of B are all possible concatenations of rows of
matrices B′ and B′′. It is easy to see that B is a proper (k1 + k2, k1 + k2, p1 +
p2, t(k1) + t(k2))-matrix. Therefore t(k1 + k2) ≤ t(k1) + t(k2). 
�

It is quite obvious that

Proposition 2. t(k) ≥ k.
Propositions 1 and 2 follow that there exists the limit lim

k→∞
t(k)
k .

A proper (k0, k, p, t)-matrix B can be interpreted as a collection of 2k disjoint
subcubes in Boolean cube {1, 2}p. Indeed, a row of B can be interpreted as a
subcube where the components with ∗ are free whereas the components with 1
or 2 are substituted by correspondent constant. We illustrate this at the example
of the matrix B3,3,4,5:

row of B3345 points of a subcube

∗122 {(1, 1, 2, 2), (2, 1, 2, 2)}
2 ∗ 12 {(2, 1, 1, 2), (2, 2, 1, 2)}
22 ∗ 1 {(2, 2, 1, 1), (2, 2, 2, 1)}
122∗ {(1, 2, 2, 1), (1, 2, 2, 2)}
2111 {(2, 1, 1, 1)}
1211 {(1, 2, 1, 1)}
1121 {(1, 1, 2, 1)}
1112 {(1, 1, 1, 2)}

The property (i) of a proper matrix provides that subcubes are disjoint. The
properties (ii) and (iii) characterize the location of subcubes in a cube and the
size of subcubes.

Estimating the numbers of points at different levels of Boolean cube that
belong to some disjoint subcubes we are able to prove that

Proposition 3. t(1) = 2, t(2) = 4, t(3) = 5, t(4) = 6, t(5) = 8, t(6) = 9,
t(7) = 11, t(8) = 12, t(10) = 15.

Already after FSE 2001 Fedorova and Tarannikov analysing a preliminary
version of this paper [21] proved in [5] and [6] that there do not exist proper
(k0, k, p, t)-matrices for t

t+k <
1

log2(
√
5+1) = 0.5902 . . . It follows that by means
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of only the method (2) with using of proper matrices it is impossible to construct
m-resilient function on V n with maximal possible nonlinearity 2n−1 − 2m+1

for m < 0.5902 . . . n + O(1). At the same time in [5] and [6] it is proved that
lim

k→∞
t(k)
k = 1

log2(
√
5+1) = 0.5902 . . . and it is constructed at infinite sequence

of such functions with m = 0.5902 . . . n + O(log2 n). Nevertheless the smallest
parameters given in [5] and [6] that improve our bounds are n = 172, m = 102.

The author is grateful to Claude Carlet, Oktay Kasim-Zadeh and Maria
Fedorova for helpful discussions.
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