Fast Encryption and Authentication: XCBC
Encryption and XECB Authentication Modes

Virgil D. Gligor* and Pompiliu Donescu

VDG Inc., 6009 Brookside Drive, Chevy Chase, MD 20815
{gligor,pompiliu}@eng.umd.edu

Abstract. We present the eXtended Ciphertext Block Chaining
(XCBC) and the eXtended Electronic Codebook (XECB) encryption
schemes or modes of encryption that can detect encrypted-message
forgeries with high probability even when used with typical non-
cryptographic Manipulation Detection Code (MDC) functions (e.g., bit-
wise exclusive-or and cyclic redundancy code (CRC) functions). These
modes detect encrypted-message forgeries at low cost in performance,
power, and implementation, and preserve both message secrecy and in-
tegrity in a single pass over the message data. Their performance and
security scale directly with those of the underlying block cipher function.
We also present the XECB message authentication (XECB-MAC) modes
that have all the operational properties of the XOR-MAC modes (e.g.,
fully parallel and pipelined operation, incremental updates, and out-of-
order verification), and have better performance. They are intended for
use either stand-alone or with encryption modes that have similar prop-
erties (e.g., counter-based XOR encryption). However, the XECB-MAC
modes have higher upper bounds on the probability of adversary’s suc-
cess in producing a forgery than the XOR-MAC modes.

1 Introduction

No one said this was an easy game !
Paul van Oorschot, March 1999.

A long-standing goal in the design of block encryption modes has been the
ability to provide message-integrity protection with simple Manipulation Detec-
tion Code (MDC) functions, such as the exclusive-or, cyclic redundancy code
(CRC), or even constant functions [5l719]. Most attempts to achieve this goal in
the face of chosen-plaintext attacks focused on different variations of the Cipher
Block Chaining (CBC) mode of encryption, which is the most common block-
encryption mode in use. To date, most attempts, including one of our own, failed
[8].

* This work was performed while this author was on sabbatical leave from the Uni-
versity of Maryland, Department of Electrical and Computer Engineering, College
Park, Maryland 20742.

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 92-[108] 2002.
© Springer-Verlag Berlin Heidelberg 2002

Fast Encryption and Authentication 93

In this paper, we define the eXtended Ciphertext Block Chaining (XCBC)
modes and the eXtended Electronic Codebook (XECB) encryption modes that
can be used with an exclusive-or function to provide the authentication of en-
crypted messages in a single pass over the data with a single cryptographic
primitive (i.e., the block cipher). These modes detect integrity violations at a
low cost in performance, power, and implementation, and can be executed in
a parallel or pipelined manner. They provide authentication of encrypted mes-
sages in real-time, without the need for an additional processing path over the
input data. The performance and security of these modes scale directly with the
performance and security of the underlying block cipher function since separate
cryptographic primitives, such as hash functions, are unnecessary.

We also present the XECB message authentication (i.e., XECB-MAC) modes
and their salient properties. The XECB-MAC modes have all the operational
properties of the XOR message authentication (XOR-MAC) modes (e.g., they
can operate in a fully parallel and pipelined manner, and support incremen-
tal updates and out-of-order verification [2]), and have better performance; i.e.,
they use only about half the number of block-cipher invocations required by the
XOR-MAC modes. However, the XECB-MAC modes have higher bounds on the
adversary’s success of producing a forgery than those of the XOR-MAC modes.
The XECB-MAC modes are intended for use either stand-alone to protect the
integrity of plaintext messages, or with encryption modes that have similar prop-
erties (e.g., counter-based XOR, encryption [1] a.k.a “counter mode”) whenever
it is desired that separate keys be used for secrecy and integrity modes.

2 An Integrity Mode for Encryption

Preliminaries and Notation. In defining the encryption modes we adopt
the approach of Bellare et al. (viz., [1]), who show that an encryption mode can
be viewed as the triple (E, D, KG), where E is the encryption function, D is
the decryption function, and KG is the probabilistic key-generation algorithm.
(Similarly, a message authentication (MAC) mode can be viewed as the triple
(S,V, KG), where S is the message signing function, V' is the message verification
function, and K G is the probabilistic key-generation algorithm.) Our encryption
and authentication modes are implemented with block ciphers, which are mod-
eled with finite families of pseudorandom functions (PRFs) or pseudorandom
permutations (PRPs).

In this context, we use the concepts of pseudorandom functions (PRFSs),
pseudorandom permutations (PRPs), and super-pseudorandom permutations
(SPRPs) ([1], [15]). Let RiL the set of all functions {0, 1} — {0,1}£. We use
F to denote either a family of pseudorandom functions or a family of super-
pseudorandom permutations, as appropriate (e.g., for the encryption schemes,
F will be a family of super-pseudorandom permutations, while for our MAC
schemes, F' can be a family of pseudorandom functions).

Given encryption scheme IT = (E, D, KG) that is implemented with SPRP

F', we denote the use of the key K & KG in the encryption of a plaintext string

94 V.D. Gligor and P. Donescu

x by EF%(z), and in the decryption of ciphertext string y by D¥ (y). The most
common method used to detect modifications of encrypted messages applies a
MDC function g (e.g., a non-keyed hash, cyclic redundancy code (CRC), bitwise
exclusive-or function [16]) to a plaintext message and concatenates the result
with the plaintext before encryption with Ef%. A message thus encrypted can
be decrypted and accepted as valid only after the integrity check is passed; i.e.,
after decryption with D¥% | the concatenated value of function g is removed from
the plaintext, and the check passes only if this value matches that obtained by
applying the MDC function to the remaining plaintext [BI7/T16]. If the integrity
check is not passed, a special failure indicator, denoted by Nwull herein, is re-
turned. This methodd has been used in commercial systems such as Kerberos
V5 [18122] and DCE [6]22], among others. The encryption scheme obtained by
using this method is denoted by IT-g = (E-g,D-g,KG), where IT is said to be
composed with MDC function g. In this mode, we denote the use of the key K
in the encryption of a plaintext string x by (Ef%-g)(x), and in the decryption
of ciphertext string y by (D¥%-g)(y).

A design goal for IT-g = (E-g, D-g, KG) modes is to find the simplest encryp-
tion mode IT = (E,D,KG) (e.g., comparable to the CBC modes) such that, when
this mode is composed with a simple, non-cryptographic MDC function g (e.g.,
as simple as a bitwise exclusive-or function), message encryption is protected
against existential forgeries. For any key K, a forgery is any ciphertext message
that is not the output of Ef%x-g. An existential forgery (EF) is a forgery that
passes the integrity check of Df%-g upon decryption; i.e., for forgery v/, (D%
¢)(y’) # Null, where Null is a failure indicator. Note that the plaintext outcome
of an existential forgery need not be known to the forgerer. It is sufficient that
the receiver of a forged ciphertext decrypt the forgery correctly.

Message Integrity Attack: Existential Forgery in a Chosen-
Plaintext Attack. The attack is defined by a protocol between an adversary
A and an oracle 9 as follows.

1. A and O select encryption mode IT-g = (E-g,D-g,KG), and O selects, uni-
formly at random, a key K of KG.

2. A sends encryption queries (i.e., plaintext messages to be encrypted) z?,
p=1,--+,qe, to the encryption function of O. Oracle O responds to A by
returning y? = (Efx-g)(a?),p =1, -+, qe, where 2P are A’s chosen plaintext
messages. A records both its encryption queries and O’s responses to them.

3. After receiving O’s encryption responses, A forges a collection of ciphertexts
Yyt 1 < i < q, where y'* # y?,Vp = 1,---,q., and sends each decryption

! Note that other methods for protecting the integrity of encrypted messages exist;
e.g., encrypting the message with a secret key and then taking the separately keyed
MAC of the ciphertext [16)3]. These methods require two passes over the message
data, require more power, and are more complex to implement than the modes we
envision for most common use. Nevertheless these methods are useful whenever key
separation is desired for secrecy and integrity.

2 O can be viewed as two oracles, the first for the encryption function of O and the
second for the decryption function of O.

Fast Encryption and Authentication 95

query 3% to the decryption function of O. O returns a success or failure
indicator to A, depending on whether (D¥%-g)(y'") # Null.

Adversary A is successful if there is at least one decryption query y'¢ such that
(DFx-g)(y'"") # Null for 1 < i < q,; i.e., ¥'* is an existential forgery. The mode
II-g = (E-g,D-g, KG) is said to be secure against a message-integrity attack if
the probability of an existential forgery in a chosen-plaintext attack is negligible.
(We use the notion of negligible probability in the same sense as that of Naor
and Reingold [17].)

Attack Parameters. A is allowed ¢. encryption queries (i.e., queries to
EFx_g), and ¢, decryption queries (i.e., queries to D% -g) totaling j. + i, bits,
and taking time t. + t,,.

Parameters ge, te, te are bound by the parameters (¢, ', t’, €’) which define
the chosen-plaintext security of I = (E,D,KG) in a secrecy attack (e.g., in the
left-or-right sense [1], for instance), and a constant ¢’ determined by the speed
of the function g. Since parameters (¢, ', t',€’) are expressed in terms of the
given parameters (t, ¢, €) of the SPRP family F, the attack parameters can be
related directly to those of the SPRP family F'.

Parameters e, fle, te, qu, v, &, are also bound by the parameters (t,q,¢€) of
the SPRP family F', namely pe + u, < ¢l, and t. + t, < t. (The parameters
qe, q» are determined by fi., pt,,.) These parameters can be set to specific values
determined by the desired probability of adversary’s success. Note that ¢, > 0
since A must be allowed verification queries. Otherwise, A cannot test whether
his forgeries are correct, since A does not know key K.

The message-integrity attack defined above is not weaker than an adaptive
one in the sense that the success probability of adversary A bounds from above
the success probability of another adversary A’ that intersperses the ¢, encryp-
tion and ¢, verification queries; i.e., the adversary is allowed to make his choice
of forgery after seeing the result of legitimate encryptions and other forgeries.
(This has been shown for chosen-message attacks against MAC functions [2|, but
the same argument holds here.) To date, this is the strongest of the known goal-
attack combinations against the integrity (authentication) of encrypted messages
[BI10].

3 Definition of the XCBC and XCBC-XOR Modes

We present three XCBC modes, namely (1) stateless, (2) stateful-sender, and
(3) stateful modes, and some implementation options. In general, the fewer state
variables the more robust the mode is in the face of failures (or disconnections)
and intrusion. This might suggest that, in practice, stateless modes are prefer-
able. However, this may not always be the case because (1) the cost of invoking
a good source of randomness for each message can be high (e.g., substantially
higher than a single AES block encryption), (2) the random number used in each
message encryption by the sender must be securely transmitted to the receiver,
which usually costs an additional block-cipher invocation, and (3) the source of

96 V.D. Gligor and P. Donescu

randomness may be hard to protect. The stateful-sender mode (e.g., a counter-
based mode) eliminates the need for a good source of randomness but does not
always eliminate the extra block-cipher invocation and the need to protect the
extra sender state variables; e.g., the source of randomness is replaced by the
enciphering of a message counter but the counter must be maintained and its
integrity must be protected by the sender across multiple message authentica-
tions. Any erroneous or faulty modification of the message counter must trigger
re-keying. (The other advantage of counter-based modes, namely the ability to
go beyond the “birthday barrier” when used with pseudo-random functions, does
not materialize in the context of the AES since AES is modeled as a family of
pseudo-random permutations.)

Maintaining secret shared-state variables, as opposed to just sender-state,
helps eliminate the extra block-cipher invocations. Extending the shared keying
state with extra, per-key, random variables shared by senders and receivers is
a fairly straight-forward matter; e.g., these shared variables can be generated
and distributed in the same way as the shared secret key, or can be generated
using the shared key (at some marginal extra cost per message) by encrypting
constants with the shared key. However, maintaining the shared state in the
face of failures (or disconnections), and intrusion presents an extra challenge
for the mode user; e.g., enlarging the shared state beyond that of a shared
secret key may increase the exposure of the mode to physical attacks. The above
discussion suggests that none of the three types of operational modes is superior
to the others in all environments, and hence all of them should be supported in
a general mode definition.

In the encryption modes presented below, the key generation algorithm, K G,
outputs a random, uniformly distributed, k-bit string or key K for the underlying
SPRP family F, thereby specifying f = Fx and f~! = Flzl of I-bits to [Fbits.
If a separate second key is needed in a mode, then a new string or key K’ is
generated by KG identifying f' = Fgs and f/~!' = F [},1 The plaintext message
to be encrypted is partitioned into a sequence of I-bit blocks (padding is done
first, if necessary), * = x1 - - z,,. Throughout this paper, @ is the exclusive-or
operator and + represents modulo 2! addition.

Stateless XCBC Mode (XCBCS$)
The encryption and decryption functions of the stateless mode,
E-XCBC$"x (x) and D—XCBC$ % (y), are defined as follows.

function £-XCBC$/(z) function D—XCBC$/ (y)
ro <+ {0,1}! Parse y as yol|ly1 - - Un

Yo = f(ro); z0 = f'(r0) ro = f""(v0); 20 = f'(r0)
fori=1,---,ndo { fori=1,---,ndo{

zi = f(x; ® zi—1) Zi =Y —1XTrg

Yi=2 +ixXro} zi=f"M2) ®zi1 }
return y = yol|ly1y2 - Yn return r = 1122 - T,

Fast Encryption and Authentication 97

Stateful-Sender XCBC Mode (XCBCC)
The encryption and decryption functions of the stateful-sender mode,
E-XCBCCOFx (z,ctr) and D—XCBCCFx (y), are defined as follows.

function £-XCBCC/ (z, ctr)
ro = f(ctr); 20 = f'(ro)
fori=1,---,ndo{

zi = f(z; ® zi—1)

Yi =2; +1 X 1o }

ctr’ < ctr +1

y=ctr|lyryz - yn
return y

function D—XCBCC/ (y)
Parse y as ctr||y1 -+ - yn

ro = f(ctr); 20 = f'(ro)
fori=1,---,ndo{

2 = Yi —1XT0

;= f"Nz) @ zim1 }
return r = x5 x,

Note that in the XCBCC mode the counter ctr can be initialized to a known

constant such as —1 by the sender. ctr’ represents the updated ctr value. In both
of the above modes the complexity is n + 2 block-cipher invocations, where n in
the length of input string x in blocks.

Stateful XCBC Mode (XCBCS)
Let IV be a random and uniformly distributed variable that is part of the keying
state shared by the sender and receiver.
E—-XCBCS$"x () and D—XCBCS$" (y), are defined as follows.

function £-XCBCS$/ (z)
Ty < {O, l}l

Yo = f(ro); 20 =1V + 1o
fori=1,---,ndo{

2z = f(x; ® zi-1)

yi =z +i X719}

return y = yo|[y1y2 -+ Yn

function D—XCBCS$/ (y)
Parse y as yo|[y1 - - - Yn
ro=f" (yo); 20 =1V +1g
fori=1,---,ndo{

Zi =1Y; —1 X7

i =f"Nz) ®zio1 }

return r =122 - ¥,

Note that in the XCBCS mode the shared IV value can be generated ran-
domly by KG and distributed to the sender and receiver along with key K
thereby saving one block cipher invocation, or can be can be generated using
key K by standard key-separation techniques thereby requiring an additional
block encryption operation per key. In the former case, the complexity of the
mode is exactly n+1 block-cipher invocations and, in the latter, is asymptotically
n + 1 block-cipher invocations.

Chaining Sequence. The block chaining sequence is that used for the tradi-
tional CBC mode, namely z; = f(x; ®z;—1), where 2 is the initialization vector,
x; is the plaintext and z; is the ciphertext of block 4,7 = 1, - - -, n. In contrast with
the traditional CBC mode, the value of z; is not revealed outside the encryption
modes, and, for this reason, z; is called a hidden ciphertext block. The actual
ciphertext output, y;, of the XCBC modes is defined using extra randomization,
namely y; = z; + i x rg, where i X rg is the modulo 2! addition of the random,
uniformly distributed, variable rg, 7 times to itself; i.e., ¢ X rq def ro+ -+ 7ro.

i times

Examples for why the randomization is necessary include those which show

that, without randomization, the swapping of two z; blocks of a ciphertext mes-

98 V.D. Gligor and P. Donescu

sage, or the insertion of two arbitrary but identical blocks into two adjacent
positions of a ciphertext message, would cause the decryption of the resulting
forgery with probability one whenever an bitwise exclusive-or function is used
as the MDC (which is what we intend to use, since these functions are among
the fastest known). Correct randomization sequences, such as i X ¢, ensure that,
among other things, collisions between any two z; values is negligible regardless
of whether these values are obtained during message encryption, forgery decryp-
tion, or both. Note that this probability is negligible even though the random-
ization sequence i X ro allows low-order bits of some z;’s to become known. (A
detailed account of why such collisions contribute to an adversary’s success in
breaking message integrity is provided in the proof of the XCBC$-XOR mode;
viz., hitp://csrc.nist.gov/encryption/modes/proposedmodes.) Examples of incor-
rect randomization sequences can be readily found; e.g., the sequence whereby
each element 7 is computed as an bitwise exclusive-or of 7 instances of r.

Initialization. In stateless implementations of the XCBC modes 79 < {0, 1};
i.e., ro is initialized to a random, uniformly distributed, [-bit value for every
message. The value of rg is sent by the sender to the receiver as yo = f(rg). In
contrast, in stateful-sender implementations, which avoid the use of a random
number generator, a counter, ctr, is initialized to a new [-bit constant (e.g., -
1) for every key K, and incremented on every message encryption. In stateful
implementations, a random initialization-vector value IV that is shared by the
sender and receiver is generated for every key K, and used to create a per-
message random initialization vector zg.

In all XCBC modes, the initialization vector zq is independent of ry. While
non-independent zg and rg values might yield secure initialization, simple rela-
tionships between these values can lead to the discovery of r¢ with non-negligible
probability, and integrity can be easily brokenH Since we use zo in the definition
of function g(z) (see below), zg should also be unpredictable so that g(x) has a
per-message unpredictable value.

The choice of encrypting 7o with a second key K’ to obtain 2y (i.e., zg =
f'(r0)) is made exclusively to simplify both the secrecy [I] and the integrity
proofs; e.g., such a zg is independent of ry and is unpredictable. To eliminate the
use of the second key and still satisfy the requirements for zy suggested above,
we can compute zg = f(rg+ 1) in stateless implementations, whereas in stateful
implementations we compute zg = IV + 7y, where the per-message ro can be
generated as a random value, or as an encryption of ctr in the XORC mode. This
eliminates the additional block-cipher invocations necessary in the stateless and
stateful-sender modes at the cost of maintaining an extra shared state variable
(IV). This choice still satisfies the requirements for z.

Generalization. The above method for protecting message integrity against
existential forgeries in chosen-plaintext attacks can be generalized as follows.
Let the output ciphertext y; be computed as y; = z; op F;, where op is the ran-

3 As a simple example illustrating why this is the case, let zo = 70 + 1, choose z; such
that zo ® x1 = ro with non-negligible probability, and then compute y1 — yo = 70.
With a known 7, one can cause collisions in the values of z; and break integrity.

Fast Encryption and Authentication 99

domization operation, E; are the elements of the randomization sequence, and
z; the hidden ciphertext generated by the encryption mode II. The encryption
mode IT (1) must be secure against adaptive chosen-plaintext attacks with re-
spect to secrecy, and (2) must use the input plaintext blocks z; to generate the
input to f. The PCBC [13/16], and the “infinite garble extension” [5] modes are
suitable, but counter-mode/XORC and XOR$ are not (since they fail condition
(2)). Operation op must be invertible, so @, modular 2! addition and subtrac-
tion are appropriate. Elements E; must be unpredictable such that collisions
among z;’s (discussed above) could only occur with negligible probability. Other
sequences can be used. For example F; = a’ X7 can be used, where F; is a linear
congruence sequence with multiplier a, where a can be chosen so that the se-
quence passes spectral tests to whatever degree of accuracy is deemed necessary.
(Examples of good multipliers are readily available in the literature [12].)

XCBC-XOR Modes. To illustrate the properties of the XCBC modes in
integrity attacks, we choose g(z) = 20 D1 ® - - - Dz, for plaintext = x1 - - -z,
where zg is defined as the initialization vector of the mode. In this example,
block g(z) is appended to the end of a n-block message plaintext x, and hence
block Zp41 = 20 ® 21 B -+ B x,. For this choice of g(z), the integrity check
performed at decryption becomes zo @ 21 @ - D 2y, = f~(2n11) ® 2n, where
Zn+1 = Yn+1 — (n+ 1) X rg, and z, =y, — n X 19.

In the XCBC modes padding is done with a standard pattern that always
starts with a “1” bit followed by the minimum number of “0” bits necessary
to fill the last block of plaintext. If the last block of a message does not need
padding, use block ¢'(z) =Zg @ 21 P - - - B, as the 41 plaintext block, where
Zo is the bitwise complement of zp; otherwise, use g(x) = 2o ® 21 O -+ D Tp.
This avoids the extra block encryption which would otherwise be necessary for
plaintexts consisting of an integral number of blocks.

The stateless and stateful encryption modes II-g obtained by the use of
schemes IT = XCBC$, II = XCBCC, or IT = XCBCS with function g(z) =
20D 11D+ D x, are denoted by XCBC$-XOR, XCBCC-XOR, and XCBCS-
XOR respectively.

Examples of Other Encryption Modes that Preserve Message In-
tegrity.

Katz and Yung [I1] proposed an interesting single-pass encryption mode, called
the Related Plaintext Chaining (RPC), that is EF-CPA secure when using a
non-cryptographic MDC function g consisting only of message start and end
tokens. RPC has several important operational advantages, such as full paral-
lelization, incremental updates, out-of-order processing, and low upper bound on
the probability of adversary’s success in producing a forgery. However, it wastes
a substantial amount of throughput since it encrypts the block sequence number
and message data in the same block. This may make the selection of modern
hash functions as the MDC function g for common encryption modes, such as
CBC, a superior performance alternative, at least for sequential implementa-
tions. Similarly the use of modern MACs, such as the UMAC, with a separate

100 V.D. Gligor and P. Donescu

key may also produce better overall throughput performance than RPC when
used with common encryption modes.

Recently, C.S. Jutla [14] proposed an interesting scheme in which the output
blocks z; of CBC encryption are modified by (i.e., bitwise exclusive-or operations)
with a sequence E; of pairwise independent elements. In this model, E; = (¢ x
IVh + IVy)mod p, where IVy, IV, are random values generated from an initial
random value r, and p is prime, and the complexity is n + 3, where n is the
length of the plaintext input in blocks. In contrast with C.S. Jutla’s scheme,
the elements of the XCBC sequence, E; = (i x 79)mod 2!, are not pairwise
independent, and the complexity is n + 2 for the stateless and stateful-sender
cases, and n + 1 for the stateful case. Also, the performance of the required
modular 2! additions is slightly better than that of mod p additions, where p is
prime. However, the pairwise independence of C.S. Jutla’s F; sequence should
yield a slightly tighter bound on the probability of successful forgery illustrating,
yet again, a fundamental tradeoff between performance and security. (The bound
is tighter by a fraction of a log, factor depending on the value of p, which would
mean that the attack complexity is within the same order of magnitude of the
XCBC bound — viz., Section 5).

More recently, P. Rogaway [20] has proposed other schemes that use inter-
esting variations of non-independent and pairwise-independent elements for the
E; sequence, similar to the sequences presented in this paper and C.S. Jutla’s,
to achieve n + 1 complexity. Under the same assumptions regarding stateful and
stateless implementations, C.S. Jutla’s modes require an extra block enciphering
over the XCBC and P. Rogaway’s modes. We note that all modes for authenti-
cated encryption include an extra block cipher operation for the enciphering of
the exclusive-or MDC; e.g., stateful XCBC and P. Rogaway’s OCB mode, which
is also stateful, require n 4+ 2 block-cipher invocations.

Architecture-Independent Parallel Encryption. C.S. Jutla’s recent parallel
mode [I4] requires that both the input to and output of the block cipher are
randomized using a sequence of pairwise-independent random blocks. Our fully
parallel modes achieve the same effect without using a sequence of pairwise-
independent random blocks. For these modes, it is sufficient to randomize the
input and output blocks of f using the same type of sequence. In this case,
the probability of input or output collisions, which would be necessary to break
security and integrity respectively, would remain negligible. An example is the
stateful Extended FElectronic Codebook-XOR encryption (XECBS-XOR) mode,
in which for index ¢,1 <14 < n+ 1,n = |z|, the ciphertext block y; is obtained
through the formulae:

yi = flx;+ctr x R+ix R)+ctr x R+ix R*, Vi,1<i<n,ctr <gq
Ynt1 = f(@pt1 +ctr x R)+ctr x R4+ (n+1) x R*,

where R, R* are two random, uniformly distributed and independent blocks each
of [bits in length that are part of the keying state shared by the sender and
receiver, and ctr is the counter that serves as message identifier. The counter
ctr is initialized to 1 and increased by 1 on every message encryption up to

Fast Encryption and Authentication 101

e, which is the bound of the number of allowable message encryptions (viz.,
Theorem 4 below). Note that a per-message unpredictable or random nonce is
unnecessary, and that the sequence of elements E; = ctr x R+ 1 X R* can be
precomputed for multiple messages, can be computed incrementally [4], and in
an out-of-order manner. To provide authentication, the last block is computed
using the following formula for the function g:

Tn+1 29(90) =21 DDy

This authenticated encryption mode achieves optimal performance; i.e., n + 1
parallel block cipher invocations, and has a throughput close to that of a single
block-cipher invocation. The security of the XECBS-XOR mode with respect
to confidentiality in an adaptive chosen-plaintext attack can be demonstrated in
the same manner as that used for the CBC mode [1].

For the XECBS-XOR encryption scheme proposed above, padding follows
the similar conventions as those for the XCBC-XOR modes to distinguish be-
tween padded and unpadded messages; i.e., the following formula is used for the
enciphering of the last block.

Yni1 = f(@py1 +ctr x Z) +ctr x R+ (n+1) x R*,

where Z = R is the bitwise complement of R and is used for unpadded messages,
and Z = R for padded messages.

Stateless architecture-independent parallel modes and stateful-sender
architecture-independent parallel modes can be specified in the same manner
as those for the XCBC modes. For example, for the stateless mode, an I-bit
random number number 7y is generated and one can replace ctr x R with rq
and use R* = f(ro + 1) in the formulae for the stateless encryption mode; rg is
also enciphered to generate yo = f(rg) which is part of the ciphertext string. In
the stateful-sender mode, rg = f(ctr), where ctr is an [-bit counter initialized to
a constant such as —1; one can replace ctr x R with ro use R* = f(rg) in the
formulae for the stateful-sender encryption mode. In the modes thus obtained
(and other related variants), there would not be any ciphertext chaining, and a
priori knowledge of the number of processors would be unnecessary.

As noted earlier, the sequence F; = ctr x R+ i X R* does not completely
hide the low order bits of z; thereby enabling verification of key guesses by an
adversary. Resistance to such attacks can be implemented in a similar manner
as that of DESX [19], if deemed necessary. However, adoption of modern block
ciphers with long keys should reduce the need for this.

4 Definition of the XECB Authentication Modes

In this section, we introduce new Message Authentication Modes (MACs) that
counter adaptive chosen-message attacks [2]. We call these MACs the eXtended
Electronic Codebook MACs, or XECB-MACs. The XECB-MAC modes have all
the properties of the XOR MACs [2], but they do not waste half of the block

102 V.D. Gligor and P. Donescu

size for recording the block identifier thereby avoid doubling the number of
block cipher invocations. Many variants of XECB-MACs are possible, and here
we present stateless version, XECB$-MAC, a stateful-sender version XECBC-
MAC, and a stateful version, the XECBS-MAC.

Message Signing. In both the stateless and stateful-sender implementation,
we generate a per-message random value yo that is used to randomize each
plaintext block of a message x, namely x;,1 < i < n,n = |z|, before it is fed to
the block cipher function f, where f = Fx is selected from a PRF family F by a
key K, which is random and uniform. The result of the randomization is x; +4 X
yo, and the result of block enciphering with f is y; = f(2; +7 X yo). The stateless
mode initialization requires a random number generator to create the random
block rg; i.e., 79 = {0,1}. Then yo = f(ro). Stateful-sender implementations
avoid the use of the random number generator, and instead, uses a counter ctr,
to create yo directly, namely yo = f(ctr). The counter ctr is initialized by the
sender on a per-key basis to a constant, such as —1, and is maintained across
consecutive signing requests for the same key K.

For the purposes of simplifying the proofs, we made the following choices
for the generation and use of random vector zp in both implementations: (1)
an additional per-message unpredictable block zy is generated and treated as
an additional last block of the message plaintext before it is also randomized
and enciphered by f, namely z,+1 = 20 and yp41 = f(20 + (R + 1) X yo); and
(2) we set zg = f'(ro), where f' = Fk/ is a PRF selected with the second key
K'. Clearly, the generation of zy can be performed with the same key, K, by
block enciphering a simple function of g (e.g., f(ro+1)), and use of K’ becomes
unnecessary.

The block cipher outputs, y1, -+, Yn,Ynt1, are exclusive-or-ed to generate
the authentication tag w = y1 & - - ® Yn Yn+1. The algorithm outputs the pair
(ro,w) in the stateless mode, and (ctr,w) in the stateful-sender mode.

We include the stateful-sender version of the XECB MAC modes below. For
the (very similar) stateless version, the reader is referred to
http://csre.nist.gov/encryption/modes/proposedmodes.

Stateful-Sender XECB-MAC Mode (XECBC-MAC)

function Sign-XECBC-MAC/ (ctr, z) function Verify-XECBC-MAC (z, ctr, w)
yo = f(ctr),zo = f'(yo) yo = f(etr),zo = f'(yo)

Tnt+1 = 20 Tnt1 = 20

fori=1,---,n+1do { fori=1,---,n+1do{

yi = f(zi +i % yo) } yi = f(xi +ixyo) }

W=Yy1 D DYn D Yn+1 w=y1® D Yn D Ynt1

ctr’ «ctr +1
return (ctr,w)

if w = v’ then return 1
else return 0.

Note that ctr’ represents the updated ctr value.

Fast Encryption and Authentication 103

Message Verification. For verification, an adversary submits a forgery =z =
x7 - -+ o, and a forged pair (rg, w) or (ctr, w) depending upon the modefd Message
x is then signed and an authentication tag w’' = y1 ®- - - @y, ByYn+1 is generated.
The algorithm outputs a bit that is either 1, if the forged authentication tag is
correct, namely w = w’, or 0, otherwise.

Block-Cipher Invocations and Mode Throughput. The number of block-cipher
invocations in the stateless and stateful-sender XECB modes can be reduced
from n 4+ 3 to n + 2 simply by eliminating the enciphering of block x,;. For
example, the enciphering of the last plaintext block can be changed to y, =
f(zn @ 20 + n X yo) (without affecting the proofs significantly). Furthermore,
in a stateful version, a random variable R is maintained on the per-key basis,
and zg = R + yg, as in the XCBCS encryption mode. This would eliminate
the extra block enciphering of the function of ry for each message, without
affecting the proofs. Hence, in a stateful XECB MAC mode, the number of
block-cipher invocations becomes n + 1, which is one more than that of PMAC
[21], which is also a stateful mode. As is the case with PMAC, the throughput
of the XECB modes comes close to that corresponding to two sequential block-
cipher invocations (as opposed to that of XOR-MAC, which corresponds to that
of a single block-cipher invocation).

The following stateful variant of the XECB modes appears to come close to
the optimal performance of any parallel MAC, namely n parallel block-cipher
invocations and throughput equivalent of a single block-cipher invocation.

Stateful XECB-MAC Mode (XECBS-MAC)
Let R, R* be two random, uniformly distributed and independent blocks that
are part of the keying state shared by the sender and receiver.

function Verify-XECBS-MACY (z, ctr, w)
if ctr > ¢s then return 0
fori=1,---,ndo{

yi = f(xi+ctr x R+ix R") }
W=D Dyn

if w = w’ then return 1

function Sign-XECBS-MAC (ctr, z)
fori=1,---,ndo {

yi = f(zi+ctr x R+ix R") }
w=y1 D DYn

ctr’ + ctr +1

return (ctr,w)

else return 0.

Note that ctr is initialized to 1, and ctr’ represents the updated ctr value.
For the XECBS-MAC mode proposed above, padding follows the similar
conventions as those for the XECBS-XOR mode to distinguish between padded
and unpadded messages; i.e., the following formula is used for the enciphering
of the last block.
Yn = f(xn + ctr Xx Z+n x RY),

where Z = R is the bitwise complement of R and is used for unpadded messages,
and Z = R for padded messages. Note that, as in the case of the XECBS-XOR

* The forgeries (z, 70, w) or (x, ctr, w) are not previously signed queries. Note also that
the length n of the forged message need not be equal to the length of any signed
message.

104 V.D. Gligor and P. Donescu

mode, a per-message unpredictable or random nonce is unnecessary, and that
the sequence of elements E; = ctr x R+1i X R* can be precomputed for multiple
messages, can be computed incrementally, and in an out-of-order manner.

Properties of the XECB Authentication Modes

1. Security. The XECB authentication modes are intended to be secure
against adaptive chosen-message attacks [2]. Theorem 2 below shows the security
bounds for the stateful-sender mode. The XECB modes, as well as all the other
modes that use similar types of randomization sequences, have higher, but still
negligible, upper bounds on the adversary’s success in producing a forgery than
those of the XOR-MAC modes.

2. Parallel and Pipelined Operation. Block-cipher (e.g., AES) computations
on different blocks can be made in a fully parallel or pipelined manner; i.e., it can
exploit any degree of parallelism or pipelining available at the sender or receiver
without a priori knowledge of the number of processors available.

3. Incremental Updates. The XECB-MAC modes are incremental with re-
spect to block replacement; e.g., a block x; of a long message is replaced with a
new value z;. For instance, let us consider the stateful-sender mode. Let the two
messages have the same counter ctr; hence, the authentication tag of the new
message, w', is obtained from the authentication tag of the previous message, w,
by the following formula: w’ = w f(z; 4+ x yo) ® f (2} +i X yo). The replacement
property can be easily extended to insertion and deletion of blocks.

4. Out-of-order Verification. The verification of the authentication tag can
proceed even if the blocks of the message arrive out of order as long as each
block is accompanied by its index and the first block has been retrieved.

5 Security Considerations

The theorems and proofs that demonstrate that these modes are secure with
respect to secrecy (e.g., in a left-or-right sense) are similar to those of the CBC
mode [T] and, therefore, are omitted. For an XCBC mode, we can determine the
(t',q', 1, €) secrecy parameters; i.e., an adversary making at most ¢’ queries,
totaling at most y’ bits, and taking time ¢’ has an advantage in breaking the
secrecy of that that mode (e.g., in a left-or-right sense) that is bounded by a
negligible €.

In establishing the security of the XCBC$ mode against the message-integrity
attack, let the parameters used in the attack be bound as follows: ¢. < ¢/,
since the XCBC$ mode is also chosen-plaintext secure, t. +t, < ¢, and u”
te + iy < ql. Let the forgery verification parameters g, i, t, be chosen within
the constraints of these bounds and to obtain the desired Prf ® F[Succ].

Theorem 1 [Security of XCBC$-XOR against a Message-Integrity At-
tack].

Suppose F'is a (t,q,€)-secure SPRP family with block length [. The mode
XCBC$-XOR is secure against a message-integrity attack consisting of g, + ¢,
queries, totaling pe + 1, < gl bits, and taking at most t. + ¢, <t time; i.e., the
probability of adversary’s success is

Fast Encryption and Authentication 105

,va(,ufu - l) Qe(Qe - 1) (qe + l)ﬂv

Prf(EF[SucC] < e+ o 571 ot l2l+1 (log, 22 7 ~+3)
Qo e
+ l2l (logZ 7 + 3)

(The proof of Theorem 1 can be found in the full version of the paper avail-
able at http://csrc.nist.gov/encryption/modes/proposedmodes.) Note that pa-
rameters g, (e, t. can be easily stated in terms of secrecy parameters (', ¢, ', €)
above by introducing a constant ¢’ defining the speed of the X OR function.
Theorem 1 above allows us to estimate the complexity of a message-integrity
attackf In a successful attack, Pr 3 [Succ} (negligible, 1]. To estimate com-

plexity, we set the probability of success when f & Pl to the customary 1/2,
and assume that the attack parameters used in the above bound, namely &=, £
are of the same order or magnitude, namely 2%, where 0 < a < 1. Also, since
the shortest message has at least three blocks, ¢e,q, < L J In this case, by

setting

qe(qe — 1) | pro(ptn — 1) (ge + 1) pty

2l+1 + l221+1 + 12! +l2l+1 (10g2 l +3)
Gulle
o (lo z ©13)=1/2,

we obtain (by ignoring the | .| function) the equation 22! 6al34 4 gal 3‘“;11 =9

which allows us to estimate « for different values of I. (In this estimate, we can
ignore the term in 2% since it is insignificant compared to the other term of

the sum.) For example, for | = 64,a =~ 22, for | = 128,a =~ 16218, and for
l= 256 a R ;gé Hence, this attack is very close to a square-root attack (i.e.,

a — 5 as [increases), and remains this way even is the secrecy bound of Lemma
1 presented in the full version of the paper available at
http://csre.nist.gov/encryption/modes/proposedmodes (adjusted for PRPs) is
taken into account for integrity (i.e., half of it is added to the integrity bound).
Thus the payoff from improved bounds using families of SPRPs is limited.

A variant of Theorem 1 can be proved for the stateful modes. Furthermore,
similar theorems hold for single-key stateless modes. The statement and proof for
such theorems are similar to the statement and proof for the integrity theorem
for the stateless mode, and hence, are omitted.

5 Technically, the complexity of a successful integrity attack, and the bound of The-
orem 1, should account for the success of a secrecy attack; i.e., half of the se-
crecy bound shown of Lemma 1 presented in the full version of the paper avail-
able at hitp://csrc.nist.gov/encryption/modes/proposedmodes (adjusted for the use
of PRPs) should be added to the bound in Theorem 1. This is the case because,
in general, in modes using the same key for both secrecy and integrity, a success-
ful secrecy attack can break integrity and, vice-versa, a successful integrity attack
can break secrecy. (This can be shown using the secrecy and integrity properties
of the IGE mode; viz., http://csrc.nist.gov/encryption/modes/proposedmodes.) As
suggested below, the addition of the secrecy bound would not affect the complexity
of a successful integrity attack.

106 V.D. Gligor and P. Donescu

The XECB-MAC modes are intended to be secure against adaptive chosen-
message attacks [2] consisting of up to ¢, signature queries totaling at most s
bits and using time up to t4, and g, verification queries totaling at most w, bits
and using time at most t,. The security of the XECBC-MAC mode is established
by the following theorem.

Theorem 2 [Security of XECBC-MAC in an Adaptive Chosen-Message
Attack].

Suppose F' is a (¢, q, €)-secure PRF family with block length I. The message
authentication mode (Sign-XECBC-MAC/, Verify-XECBC-MAC/, KG) is se-
cure against adaptive chosen-message (gs, ¢,) attacks consisting of ¢s+ ¢, queries
totaling us 4w, < ¢l bits and taking at most t5+1%, < ¢ time; i.e., the probability
of adversary’s success is

Prfz [Succ] < e+ “ (logy —+3) Dsho | (qs +2q, + &) Bs (logy +3)

l 12! 21/ (2141 0l
The proof of this theorem is similar to that of Theorem 1 and is presented in
the full version of the paper available at
http://csre.nist.gov/encryption/modes/proposedmodes.

A similar theorem can be provided for the stateless message authentication
mode. The complexity of an attack against XECBC-MAC can be determined in
a similar manner to that of an attack against the XCBC$-XOR mode.

We also present a theorem for the security of the XECBS-MAC mode. (The
restatement of this theorem in terms of a family of PRPs, such as AES, and the
corresponding proof modifications are standard.)

Theorem 3 [Security of XECBS-MAC in an Adaptive Chosen-Message
Attack].

Suppose F' is a (¢, q, €)-secure PRF family with block length I. The message
authentication mode (Sign-XECBS-MACY, Verify-XECBS-MAC/, KQ) is secure
against adaptive chosen-message (gs,q,) attacks consisting of ¢s + ¢, queries
(qv < ¢s) totaling ps + p,y < gl bits and taking at most ¢t + ¢, < ¢ time; i.e., the
probability of adversary’s success is

12!

QU Hs
Prfz [Succ] < eJr — + l21+1 (log, T +3)+ (qq) + ;) s (logs g5 + 3)

i
+ (q”+ I)l2l+1(1 g27+3)

The proof of this theorem is similar to that of Theorems 1 and 2 and is presented
in the full version of the paper available at
http://csre.nist.gov/encryption/modes/proposedmodes.

The security of the XECBS-XOR mode in a message-integrity attack is
shown by the theorem bellow.

Theorem 4 [Security of XECBS-XOR in a Message-Integrity Attack].

Suppose F' is a (t,q,€)-secure SPRP family with block length [. The mode
XECBS-XOR is secure against a message-integrity attack consisting of ¢. + ¢,

Fast Encryption and Authentication 107

queries (g, < q.), totaling p. + 1, < gl bits, and taking at most t. +t, < t time;
i.e., the probability of adversary’s success is

Ho
[2l+1

pe(pte — 1)
1291+1

(log, Te +3).

fo (pv — 1) Iz
1}1221;“ (log, TU +3)+
He Ge He He
+ (0) grrromac+3)+ (04)

o)
Prf]iF[Succ] <e+ + o +

(The proof of Theorem 4 can be found in the full version of the paper available
at hitp://csre.nist.gov/encryption/modes/proposedmodes.) Note that maximum
allowable values for ¢; and g, in Theorems 3 and 4 can be determined by setting
the probability of successful forgery to a desired value.

Acknowledgments. We thank David Wagner for pointing out an oversight in
an earlier version of Theorem 1, Tal Malkin for her thoughtful comments and
suggestions, Omer Horvitz and Radostina Koleva for their careful reading of this

paper.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A Concrete Security Treatment
of Symmetric Encryption,” Proceedings of the 38th Symposium on Foundations of
Computer Science, IEEE, 1997, (394-403). A full version of this paper is available
at http://www-cse.ucsd.edu/users/mihir.

2. M. Bellare, R. Guerin, and P.Rogaway, “XOR MACs: New methods for message
authentication using finite pseudo-random functions”, Advances in Cryptology-
CRYPTO ’95 (LNCS 963), 15-28, 1995. (Also U.S. Patent No. 5,757,913, May
1998, and U.S. Patent No. 5,673,318, Sept. 1997.)

3. M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among no-
tions and analysis of the generic composition paradigm,” manuscript, May 26,
2000. http://eprint.iacr.org/2000.025.ps.

4. E. Buonanno, J. Katz and M. Yung, “Incremental Unforgeable Encryption, ” Proc.
Fast Software Encryption 2001, M. Matsui (ed.) (to appear in Springer-Verlag,
LNCS).

5. C.M. Campbell, “Design and Specification of Cryptographic Capabilities,” in Com-
puter Security and the Data Encryption Standard, (D.K. Brandstad (ed.)) National
Bureau of Standards Special Publications 500-27, U.S. Department of Commerce,
February 1978, pp. 54-66.

6. Open Software Foundation, “OSF - Distributed Computing Environment (DCE),
Remote Procedure Call Mechanisms,” Code Snapshot 3, Release, 1.0, March 17,
1991.

7. V.D. Gligor and B. G. Lindsay,“Object Migration and Authentication,” IEFE-
Transactions on Software Engineering, SE-5 Vol. 6, November 1979. (Also IBM-
Research Report RJ 2298 (3104), August 1978.)

8. V.D. Gligor, and P. Donescu, “Integrity-Aware PCBC Schemes,” in Proc. of the
7th Int’l Workshop on Security Protocols, (B. Christianson, B.Crispo, and M. Roe
(eds.)), Cambridge, U.K., LNCS 1796, April 2000.

108

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

V.D. Gligor and P. Donescu

R.R. Juneman, S.M. Mathias, and C.H. Meyer, "Message Authentication with
Manipulation Detection Codes,” Proc. of the IEEE Symp. on Security and Privacy,
Oakland, CA., April 1983, pp. 33-54.

J. Katz and M. Yung, “Complete characterization of security notions for proba-
bilistic private-key encryption,” Proc. of the 32nd Annual Symp. on the Theory of
Computing, ACM 2000.

J. Katz and M. Yung, “Unforgeable Encryption and Adaptively Secure Modes of
Operation,” Proc. Fast Software Encryption 2000, B. Schneir (ed.) (to appear in
Springer-Verlag, LNCS).

D.E. Knuth, “The Art of Computer Programming - Volume 2: Seminumerical
Algorithms,” Addison-Wesley, 1981 (second edition), Chapter 3.

J. T. Kohl, “The use of encryption in Kerberos for network authentication”, Ad-
vances in Cryptology-CRYPTO ’89 (LNCS 435), 35-43, 1990.

C.S. Jutla, “Encryption Modes with Almost Free Message Integrity,” IBM T.J.
Watson Research Center, Yorktown Heights, NY 10598, manuscript, August 1,
2000. hitp://eprint.iacr.org/2000/039.

M Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions”, SIAM J. Computing, Vol. 17, No. 2, April 1988.

A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, 1997.

M. Naor and O. Reingold, “From Unpredictability to Indistinguishability: A Simple
Construction of Pseudo-Random Functions from MACs,” Advances in Cryptology
- CRYPTO ’98 (LNCS 1462), 267-282, 1998.

RFC 1510, “The Kerberos network authentication service (V5)”, Internet Request
for Comments 1510, J. Kohl and B.C. Neuman, September 1993.

P. Rogaway, “The Security of DESX,” RSA Laboratories Cryptobytes, Vol. 2, No.
2, Summer 1996.

P. Rogaway, “OCB Mode: Parallelizable Authenticated Encryption”, Preliminary
Draft, October 16, 2000, available at
http://csre.nist.gov/encryption/aes/modes/rogaway-ocbl1.pdf.

P. Rogaway, “PMAC: A Parallelizable Message Authentication Mode,” Preliminary
Draft, October 16, 2000, available at
http://csre.nist.gov/encryption/aes/modes/rogaway-pmacl.pdyf.

S. G. Stubblebine and V. D. Gligor, “On message integrity in cryptographic pro-
tocols”, Proceedings of the 1992 IEEE Computer Society Symposium on Research
in Security and Privacy, 85-104, 1992.

	Introduction
	An Integrity Mode for Encryption
	Definition of the XCBC and XCBC-XOR Modes
	Definition of the XECB Authentication Modes
	Security Considerations

