Skip to main content

log n-Approximative NLCk-Decomposition in O(n 2k+1) Time

(Extended Abstract)

  • Conference paper
  • First Online:
  • 671 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2204))

Abstract

NLCk for k = 1, … is a family of algebras on vertex-labeled graphs introduced by Wanke. An NLC-decomposition of a graph is a derivation of this graph from single vertices using the operations in question. The width of such a decomposition is the number of labels used, and the NLC-width of a graph is the minimum width among its NLC-decompositions. Many difficult graph problems can be solved efficiently with dynamic programming if an NLC-decomposition of low width is given for the input graph. This paper shows that an NLC-decomposition of width at most log n times the optimal width k can be found in O(n 2k+1) time. Related concept: clique-width.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, and U. Rotics. Polynomial time recognition of clique-width ⪯ 3 graphs. In Proc. 4th Latin American Symposium on Theoretical Informatics, volume 1776 of Lecture Notes in Computer Science, pages 126–134, Berlin, 2000. Springer.

    Google Scholar 

  2. D. G. Corneil, H. Lerchs, and L. S. Burlingham. Complement reducible graphs. Discrete Appl. Math., 3:163–174, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14:926–934, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. G. Corneil and U. Rotics. On the relationship between clique-width and treewidth. These proceedings.

    Google Scholar 

  5. B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. J. Comput. System Sci., 46:218–270, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique width. Theory Comput. Systems, 33:125–150, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Appl. Math., 108:23–52, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Courcelle and S. Olariu. Clique-width: A graph complexity measure — preliminary results and open problems. In Proc. 5th Int. Workshop on Graph Grammars and Their Application to Computer Science, pages 263–270, Williamsburg, VA, Nov. 1994.

    Google Scholar 

  9. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Appl. Math., 101:77–114, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. These proceedings.

    Google Scholar 

  11. M. C. Golumbic and U. Rotics. On the clique-width of perfect graph classes. In Proc. 25th Int. Workshop on Graph-Theoretic Concepts in Computer Science, volume 1665 of Lecture Notes in Computer Science, pages 135–147, Berlin, 1999. Springer.

    Chapter  Google Scholar 

  12. F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without K n,n. In Proc. 26th Int. Workshop on Graph-Theoretic Concepts in Computer Science, volume 1928 of Lecture Notes in Computer Science, pages 196–205, Berlin, 2000. Springer.

    Chapter  Google Scholar 

  13. Ö. Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition — relationships and results for random graphs. Congr. Numer., 132:39–60, 1998.

    MATH  MathSciNet  Google Scholar 

  14. Ö. Johansson. NLC2-decomposition in polynomial time. Internat. J. Found. Comput. Sci., 11:373–395, 2000. Extended abstract in LNCS 1665, pages 110-121.

    Google Scholar 

  15. E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Appl. Math., 54:251–266, 1994.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johansson, Ö. (2001). log n-Approximative NLCk-Decomposition in O(n 2k+1) Time. In: Brandstädt, A., Le, V.B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2001. Lecture Notes in Computer Science, vol 2204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45477-2_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-45477-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42707-0

  • Online ISBN: 978-3-540-45477-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics