Skip to main content

CBF: A New Framework for Object Categorization in Cortex

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1811))

Included in the following conference series:

Abstract

Building on our recent hierarchical model of object recognition in cortex, we show how this model can be extended in a straightforward fashion to perform basic-level object categorization. We demonstrate the capability of our scheme, called “Categorical Basis Functions” (CBF) with the example domain of cat/dog categorization, using stimuli generated with a novel 3D morphing system. We also contrast CBF to other schemes for object categorization in cortex, and present preliminary results from a physiology experiment that support CBF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psych. Rev. 94, 115–147.

    Article  Google Scholar 

  2. Bülthoff, H. and Edelman, S. (1992). Psychophysical support for a two-dimensional view interpolation theory of object recognition. Proc. Nat. Acad. Sci. USA 89, 60–64.

    Article  Google Scholar 

  3. Edelman, S. (1999). Representation and Recognition in Vision. MIT Press, Cambridge, MA.

    Google Scholar 

  4. Freedman, D., Riesenhuber, M., Shelton, C., Poggio, T., and Miller, E. (1999). Categorical representation of visual stimuli in the monkey prefrontal (PF) cortex. In Soc. Neurosci. Abs., volume 29, 884.

    Google Scholar 

  5. Gauthier, I., Anderson, A., Tarr, M., Skudlarski, P., and Gore, J. (1997). Levels of categorization in visual recognition studied with functional mri. Curr. Biol. 7, 645–651.

    Article  Google Scholar 

  6. Intrator, N. and Edelman, S. (1997). Learning low-dimensional representations via the usage of multiple-class labels. Network 8, 259–281.

    Article  MATH  Google Scholar 

  7. Logothetis, N., Pauls, J., and Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563.

    Article  Google Scholar 

  8. Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. Freeman, San Francisco, CA.

    Google Scholar 

  9. Papageorgiou, C., Oren, M., and Poggio, T. (1998). A general framework for object detection. In Proceedings of the International Conference on Computer Vision, Bombay, India, 555–562. IEEE, Los Alamitos, CA.

    Google Scholar 

  10. Perrett, D., Oram, M., Harries, M., Bevan, R., Hietanen, J., Benson, P., and Thomas, S. (1991). Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp. Brain Res. 86, 159–173.

    Article  Google Scholar 

  11. Poggio, T. and Edelman, S. (1990). A network that learns to recognize 3D objects. Nature 343, 263–266.

    Article  Google Scholar 

  12. Quinn, P., Eimas, P., and Rosenkrantz, S. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception 22, 463–475.

    Article  Google Scholar 

  13. Riesenhuber, M. and Poggio, T. (1999). Are cortical models really bound by the “Binding Problem”? Neuron 24, 87–93.

    Article  Google Scholar 

  14. Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neurosci. 2, 1019–1025.

    Article  Google Scholar 

  15. Riesenhuber, M. and Poggio, T. (1999). A note on object class representation and categorical perception. Technical Report AI Memo 1679, CBCL Paper 183, MIT AI Lab and CBCL, Cambridge, MA.

    Google Scholar 

  16. Rosch, E. (1973). Natural categories. Cognit. Psych. 4, 328–350.

    Article  Google Scholar 

  17. Shelton, C. (1996). Three-dimensional correspondence. Master’s thesis, MIT, (1996).

    Google Scholar 

  18. Tarr, M. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonom. Bull. & Rev. 2, 55–82.

    Google Scholar 

  19. Tarr, M. and Gauthier, I. (1998). Do viewpoint-dependent mechanisms generalize across members of a class? Cognition 67, 73–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riesenhuber, M., Poggio, T. (2000). CBF: A New Framework for Object Categorization in Cortex. In: Lee, SW., Bülthoff, H.H., Poggio, T. (eds) Biologically Motivated Computer Vision. BMCV 2000. Lecture Notes in Computer Science, vol 1811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45482-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45482-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67560-0

  • Online ISBN: 978-3-540-45482-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics