Skip to main content

A Biologically-Motivated Approach to Image Representation and Its Application to Neuromorphology

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1811))

Included in the following conference series:

Abstract

A powerful framework for the representation, characterization and analysis of two-dimensional shapes, with special attention given to neurons, is presented. This framework is based on a recently reported approach to scale space skeletonization and respective reconstructions by using label propagation and the exact distance transform. This methodology allows a series of remarkable properties, including the obtention of high quality skeletons, scale space representation of the shapes under analysis without border shifting, selection of suitable spatial scales, and the logical hierarchical decomposition of the shapes in terms of basic components. The proposed approach is illustrated with respect to neuromorphometry, including a novel and fully automated approach to automated dendrogram extraction and the characterization of the main properties of the dendritic arborization which, if necessary, can be done in terms of the branching hierarchy. The reported results fully corroborate the simplicity and potential of the proposed concepts and framework for shape characterization and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cesar Jr., R.M. and L. da F. Costa. Towards Effective Planar Shape Representation with Multiscale Digital Curvature Analysis based on Signal Processing Techniques, Pattern Recognition, 29 (1996) 1559–1569

    Article  Google Scholar 

  2. Costa, L. da F., R. M. Cesar Jr, R. C. Coelho, and J. S. Tanaka. 1998. Perspective on the Analysis and Synthesis of Morphologically Realistic Neural Networks, in Modeling in the Neurosciences (R. Poznanski Ed). Invited Paper, (1999) 505–528, Harwood Academic Publishers

    Google Scholar 

  3. Costa, L. da F. and T. J. Velte. Automatic characterization and classification of ganglion cells from the salamander retina, Journal of Comparative Neurology, 404(1) (1999) 33–51

    Article  Google Scholar 

  4. F. Attneave. Some Informational Aspects of Visual Perception, Psychological Review, 61 (1954) 183–193

    Article  Google Scholar 

  5. Costa, L. da F. Multidimensional scale-space shape analysis. Santorini, In: Proceedings International Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional Imaging, Santorini-Greece, (1999) 214–7

    Google Scholar 

  6. Costa, L. da F. & Estrozi, L. F. Multiresolution Shape Representation without Border Shifting, Electronics Letters, 35 (1999) 1829–1830

    Article  Google Scholar 

  7. Wright, M.W. The Extended Euclidean Distance Transform-Dissertation submitted for the Degree of Doctor of Philosophy at the University of Cambridge, June 1995

    Google Scholar 

  8. Leyton, M. Symmetry-Curvature Duality, Computer Vision, Graphics and Image Processing, 38 (1987) 327–341

    Article  Google Scholar 

  9. Blum, H. Biological Shape and Visual Science (Part I), J. Theor. Biol., 38 (1973) 205–287

    Article  MathSciNet  Google Scholar 

  10. Lindberg, T. Scale-space theory in computer vision. Kluwer Academic Publishers, 1994

    Google Scholar 

  11. Ogniewicz, R. L. Discrete Voronoi Skeletons, Hartung-Gorre Verlag, Germany, 1993

    Google Scholar 

  12. Tricot, C. 1995. Curves and Fractal Dimension, Springer-Verlag, Paris

    MATH  Google Scholar 

  13. Lantuéjoul, C. Skeletonization in quantitative metallography, In Issues of Digital Image Processing, R. M. Haralick and J.-C. Simon Eds., Sijthoff and Noordhoff, 1980

    Google Scholar 

  14. Fukuda, Y.; Hsiao, C. F.; Watanabe; M. and Ito, H.; Morphological Correlates of Physiologically Identified Y-, X-, and W-Cells in Cat Retina, Journal of Neurophysiology, 52(6) (1984) 999–1013

    Google Scholar 

  15. Leventhal, A. G. and Schall, D., Structural Basis of Orientation Sensitivity of Cat Retinal Ganglion Cells, The Journal of Comparative Neurology, 220 (1983) 465–475

    Article  Google Scholar 

  16. Linden, R. Dendritic Competition in the Developing Retina: Ganglion Cell Density Gradients and Laterally Displaced Dendrites, Visual Neuroscience, 10 (1993) 313–324

    Article  Google Scholar 

  17. Morigiwa, K.; Tauchi, M. and Fukuda, Y., Fractal analysis of Ganglion Cell Dendritic Branching Patterns of the Rat and Cat Retinae, Neurocience Research, Suppl. 10, (1989) S131–S140

    Google Scholar 

  18. Saito, H. A., Morphology of Physiologically Identified X-, Y-, and W-Type Retinal Ganglion Cells of the Cat, The Journal of Comparative Neurology, 221 (1983) 279–288

    Article  Google Scholar 

  19. Smith Jr., T. G.; Marks, W. B.; Lange, G. D.; Sheriff Jr., W. H. and Neale, E. A.; A Fractal Analysis of Cell Images, Journal of Neuroscience Methods, 27 (1989) 173–180

    Article  Google Scholar 

  20. Van Ooyen, A. & Van Pelt, J., Complex Periodic Behavior in a Neural Network Model with Activity-Dependent Neurite Outgrowth, Journal of Theoretical Biology, 179, (1996) 229–242

    Article  Google Scholar 

  21. Van Oss, C. & van Ooyen, A., 1997. Effects of Inhibition on Neural Network Development Through Active-Dependent Neurite Outgrowth, Journal of Theoretical Biology, 185 (1997) 263–280

    Article  Google Scholar 

  22. Vaney, D. I. Territorial Organization of Direction-Selective Ganglion Cells in Rabbit Retina, The Journal of Neuroscience, 14(11) (1994) 6301–6316

    Google Scholar 

  23. Velte, T.J. and Miller, R. F., Dendritic Integration in Ganglion Cells of the Mudpuppy Retina, Visual Neuroscience, 12 (1995) 165–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin-Heidelberg

About this paper

Cite this paper

Costa, L.d.F., Campos, A.G., Estrozi, L.F., Rios-Filho, L.G., Bosco, A. (2000). A Biologically-Motivated Approach to Image Representation and Its Application to Neuromorphology. In: Lee, SW., Bülthoff, H.H., Poggio, T. (eds) Biologically Motivated Computer Vision. BMCV 2000. Lecture Notes in Computer Science, vol 1811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45482-9_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-45482-9_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67560-0

  • Online ISBN: 978-3-540-45482-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics