Skip to main content

Evaluation of Adaptive NN-RBF Classifier Using Gaussian Mixture Density Estimates

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1811))

Abstract

This paper is focused on the development of an adaptive NN-RBF classifier for the recognition of objects. The classifier deals with the problem of continuously changing object characteristics used by the recognition processes. This characteristics change is due to the dynamics of scene-viewer relationship such as resolution and lighting. The approach applies a modified Radial-Basis Function paradigm for model-based object modeling and recognition. On-line adaptation of these models is developed and works in a closed loop with the object recognition system to perceive discrepancies between object models and varying object characteristics. The on-line adaptation employs four model evolution behaviors in adapting the classifier’s structure and parameters. The paper also proposes that the models modified through the on-line adaptation be analyzed by an off-line model evaluation method (Gaussian mixture density estimates).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, S. M., Wegman, E. J.: A Penalty Function Method for Simplifying Adaptive Mixture Density. Computing Science and Statistics. 30 (1998) 134–143

    Google Scholar 

  2. Akaike, H.: A New Look at the Statistical Model Identification. IEEE Trans. Auto. Control. 19 (1974) 716–723

    Article  MATH  MathSciNet  Google Scholar 

  3. Athinarayanan, R.: A biologically based competition model for self-organizing neural networks. Proceedings of Systems, Man, and Cybernetics. 2 (1998) 1806–1811

    Google Scholar 

  4. Baik, S.: Model Modification Methodology for Adaptive Object Recognition in a Sequence of Images. Ph.D. Thesis, George Mason University. (1999)

    Google Scholar 

  5. Bishop, C. M.: Neural Networks for Pattern Recognition. Oxford. (1995)

    Google Scholar 

  6. Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of Royal Statistical Society(B). 39 (1977) 1–39

    MATH  MathSciNet  Google Scholar 

  7. Jain, A.K., Bhattacharjee, S.: Text Segmentation Using Gabor Filters for Automatic Document Processing. Machine Vision and Applications. 5 (1992) 169–184

    Article  Google Scholar 

  8. Haykin, S.. Neural Networks, Prentice Hall. (1999)

    Google Scholar 

  9. Musavi, M. T., et al.: A Probabilistic Model For Evaluation Of Neural Network Classifiers. Pattern Recognition. 25 (1992) 1241–1251

    Article  Google Scholar 

  10. Narendra, K.S., Mukhopadhyay, S.: Intelligent control using neural networks. IEEE Control Systems Magazine. 12 (1992) 11–18

    Article  Google Scholar 

  11. Pachowicz, P.W.: Invariant Object Recognition: A Model Evolution Approach. Proceedings of DARPA IUW. (1993) 715–724

    Google Scholar 

  12. Poggio, T. and Girosi. F.: Networks for approximation and Learning. Proceedings of the IEEE 78. 9 (1990) 1481–1497

    Article  Google Scholar 

  13. Rigoll, G.: Mutual information neural networks for dynamic pattern recognition tasks. Proceedings of the IEEE International Symposium. 1 (1996) 80–85

    Google Scholar 

  14. Roeder, K., Wasserman, L.: Practical Bayesian Density Estimation Using Mixtures of Normals. Journal of American Statistical Association. 92 894–902

    Google Scholar 

  15. Schwarz, G.: Estimating the Dimension of a Model. Annals of Statistics. 6 (1978) 461–464

    Article  MATH  MathSciNet  Google Scholar 

  16. Solka, J. L., Wegman, E. J., Priebe, C. E., Poston, W. L., Rogers, G. W.: A Method to Determine the Structure of an Unknown Mixture using Akaike Information Criterion and the Bootstrap. Statistics and Computing. (1998)

    Google Scholar 

  17. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. (1999)

    Google Scholar 

  18. Titterington, D. M., Smith, A. F. M., Makov, U. E.: Statistical Analysis of Finite Mixture Distributions, Willey (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baik, S.W., Ahn, S., Pachowicz, P.W. (2000). Evaluation of Adaptive NN-RBF Classifier Using Gaussian Mixture Density Estimates. In: Lee, SW., Bülthoff, H.H., Poggio, T. (eds) Biologically Motivated Computer Vision. BMCV 2000. Lecture Notes in Computer Science, vol 1811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45482-9_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-45482-9_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67560-0

  • Online ISBN: 978-3-540-45482-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics